机械化学通过挤压:在连续模式下纳米材料设计和催化的机会

Oscar Trentin, Daniele Polidoro, A. Perosa, E. Rodriguez-castellon, D. Rodríguez‐Padrón, M. Selva
{"title":"机械化学通过挤压:在连续模式下纳米材料设计和催化的机会","authors":"Oscar Trentin, Daniele Polidoro, A. Perosa, E. Rodriguez-castellon, D. Rodríguez‐Padrón, M. Selva","doi":"10.3390/chemistry5030120","DOIUrl":null,"url":null,"abstract":"The potentialities of mechanochemistry trough extrusion have been investigated for the design of nanosized catalysts and their use in C-C bond-forming reactions. The mechanochemical approach proved successful for the synthesis of supported palladium nanoparticles with mean diameter within 6–10 nm, achieved by the reduction of Pd(II) acetate with ethylene glycol, in the absence of any solvent. A mesoporous N-doped carbon derived from chitin as a renewable biopolymer, was used as a support. Thereafter, the resulting nanomaterials were tested as catalysts to implement a second extrusion based-protocol for the Suzuki-Miyaura cross-coupling reaction of iodobenzene and phenylboronic acid. The conversion and the selectivity of the reaction were 81% and >99%, respectively, with a productivity of the desired derivative, biphenyl, of 41 mmol gcat−1 h−1.","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemistry through Extrusion: Opportunities for Nanomaterials Design and Catalysis in the Continuous Mode\",\"authors\":\"Oscar Trentin, Daniele Polidoro, A. Perosa, E. Rodriguez-castellon, D. Rodríguez‐Padrón, M. Selva\",\"doi\":\"10.3390/chemistry5030120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potentialities of mechanochemistry trough extrusion have been investigated for the design of nanosized catalysts and their use in C-C bond-forming reactions. The mechanochemical approach proved successful for the synthesis of supported palladium nanoparticles with mean diameter within 6–10 nm, achieved by the reduction of Pd(II) acetate with ethylene glycol, in the absence of any solvent. A mesoporous N-doped carbon derived from chitin as a renewable biopolymer, was used as a support. Thereafter, the resulting nanomaterials were tested as catalysts to implement a second extrusion based-protocol for the Suzuki-Miyaura cross-coupling reaction of iodobenzene and phenylboronic acid. The conversion and the selectivity of the reaction were 81% and >99%, respectively, with a productivity of the desired derivative, biphenyl, of 41 mmol gcat−1 h−1.\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5030120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5030120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了机械化学槽挤压法在纳米催化剂设计和碳-碳成键反应中的应用。机械化学方法在没有任何溶剂的情况下,通过用乙二醇还原醋酸Pd(II),成功地合成了平均直径在6-10 nm之间的负载型钯纳米颗粒。甲壳素是一种可再生的生物聚合物,采用中孔氮掺杂碳作为载体。随后,将得到的纳米材料作为催化剂进行了测试,以实现基于第二次挤压的方案,用于碘苯和苯硼酸的Suzuki-Miyaura交叉偶联反应。该反应的转化率和选择性分别为81%和>99%,所需衍生物联苯的产率为41 mmol gcat−1 h−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanochemistry through Extrusion: Opportunities for Nanomaterials Design and Catalysis in the Continuous Mode
The potentialities of mechanochemistry trough extrusion have been investigated for the design of nanosized catalysts and their use in C-C bond-forming reactions. The mechanochemical approach proved successful for the synthesis of supported palladium nanoparticles with mean diameter within 6–10 nm, achieved by the reduction of Pd(II) acetate with ethylene glycol, in the absence of any solvent. A mesoporous N-doped carbon derived from chitin as a renewable biopolymer, was used as a support. Thereafter, the resulting nanomaterials were tested as catalysts to implement a second extrusion based-protocol for the Suzuki-Miyaura cross-coupling reaction of iodobenzene and phenylboronic acid. The conversion and the selectivity of the reaction were 81% and >99%, respectively, with a productivity of the desired derivative, biphenyl, of 41 mmol gcat−1 h−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信