{"title":"层状锂镍锰氧化物作为二次电池的环保正极材料","authors":"M. Arinawati, F. Nugroho, C. Yudha","doi":"10.20961/esta.v2i1.61203","DOIUrl":null,"url":null,"abstract":"Cobalt-free cathode material development is considered necessity to assure the sustainability of Li-ion batteries. Cobalt is always considered expensive and unsafe for both human and environment. LiNi0.5Mn0.5O2 (LNMO) is a layer structured cathode material that has similar feature to LiCoO2 (LCO). A simple and fast processing of LNMO is proposed. A precipitation of nickel manganese oxalate was obtained in a batch reactor under atmospheric condition. The as-obtained homogenous oxalate precursor was converted to LNMO via high temperature lithiation. Based on the XRD result, a crystalline product with layer structure is successfully obtained. The presence of impurities such as residual Li can be detected from the FTIR spectra. SEM Images confirmed quasi-spherical particles with grain size of less than 10 micrometer. The charge-discharge analysis of LNMO containing cell deliver a capacity of 42 mAh/g. In spite of its promising report, continuous improvement is necessary to obtain cell with better electrochemical performance.","PeriodicalId":11676,"journal":{"name":"Energy Storage Technology and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A layered lithium nickel manganese oxide as environmentally friendly cathode material for secondary batteries\",\"authors\":\"M. Arinawati, F. Nugroho, C. Yudha\",\"doi\":\"10.20961/esta.v2i1.61203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cobalt-free cathode material development is considered necessity to assure the sustainability of Li-ion batteries. Cobalt is always considered expensive and unsafe for both human and environment. LiNi0.5Mn0.5O2 (LNMO) is a layer structured cathode material that has similar feature to LiCoO2 (LCO). A simple and fast processing of LNMO is proposed. A precipitation of nickel manganese oxalate was obtained in a batch reactor under atmospheric condition. The as-obtained homogenous oxalate precursor was converted to LNMO via high temperature lithiation. Based on the XRD result, a crystalline product with layer structure is successfully obtained. The presence of impurities such as residual Li can be detected from the FTIR spectra. SEM Images confirmed quasi-spherical particles with grain size of less than 10 micrometer. The charge-discharge analysis of LNMO containing cell deliver a capacity of 42 mAh/g. In spite of its promising report, continuous improvement is necessary to obtain cell with better electrochemical performance.\",\"PeriodicalId\":11676,\"journal\":{\"name\":\"Energy Storage Technology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20961/esta.v2i1.61203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/esta.v2i1.61203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A layered lithium nickel manganese oxide as environmentally friendly cathode material for secondary batteries
Cobalt-free cathode material development is considered necessity to assure the sustainability of Li-ion batteries. Cobalt is always considered expensive and unsafe for both human and environment. LiNi0.5Mn0.5O2 (LNMO) is a layer structured cathode material that has similar feature to LiCoO2 (LCO). A simple and fast processing of LNMO is proposed. A precipitation of nickel manganese oxalate was obtained in a batch reactor under atmospheric condition. The as-obtained homogenous oxalate precursor was converted to LNMO via high temperature lithiation. Based on the XRD result, a crystalline product with layer structure is successfully obtained. The presence of impurities such as residual Li can be detected from the FTIR spectra. SEM Images confirmed quasi-spherical particles with grain size of less than 10 micrometer. The charge-discharge analysis of LNMO containing cell deliver a capacity of 42 mAh/g. In spite of its promising report, continuous improvement is necessary to obtain cell with better electrochemical performance.