{"title":"采用人工智能技术的自动设计综合","authors":"F.J Vico , F.J Veredas , J.M Bravo , J Almaraz","doi":"10.1016/S0954-1810(99)00014-X","DOIUrl":null,"url":null,"abstract":"<div><p>Design synthesis represents a highly complex task in the field of industrial design. The main difficulty in automating it is the definition of the design and performance spaces, in a way that a computer can generate optimum solutions. Following a different line from the machine learning, and knowledge-based methods that have been proposed, our approach considers design synthesis as an optimization problem. From this outlook, neural networks and genetic algorithms can be used to implement the fitness function and the search method needed to achieve optimum design. The proposed method has been tested in designing a telephone handset. Although the objective of this application is based on esthetic and ergonomic cues (subjective information), the algorithm successfully converges to good solutions.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 3","pages":"Pages 251-256"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00014-X","citationCount":"30","resultStr":"{\"title\":\"Automatic design synthesis with artificial intelligence techniques\",\"authors\":\"F.J Vico , F.J Veredas , J.M Bravo , J Almaraz\",\"doi\":\"10.1016/S0954-1810(99)00014-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Design synthesis represents a highly complex task in the field of industrial design. The main difficulty in automating it is the definition of the design and performance spaces, in a way that a computer can generate optimum solutions. Following a different line from the machine learning, and knowledge-based methods that have been proposed, our approach considers design synthesis as an optimization problem. From this outlook, neural networks and genetic algorithms can be used to implement the fitness function and the search method needed to achieve optimum design. The proposed method has been tested in designing a telephone handset. Although the objective of this application is based on esthetic and ergonomic cues (subjective information), the algorithm successfully converges to good solutions.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"13 3\",\"pages\":\"Pages 251-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00014-X\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095418109900014X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095418109900014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic design synthesis with artificial intelligence techniques
Design synthesis represents a highly complex task in the field of industrial design. The main difficulty in automating it is the definition of the design and performance spaces, in a way that a computer can generate optimum solutions. Following a different line from the machine learning, and knowledge-based methods that have been proposed, our approach considers design synthesis as an optimization problem. From this outlook, neural networks and genetic algorithms can be used to implement the fitness function and the search method needed to achieve optimum design. The proposed method has been tested in designing a telephone handset. Although the objective of this application is based on esthetic and ergonomic cues (subjective information), the algorithm successfully converges to good solutions.