Geoffrey Fairchild, Alberto Maria Segre, G. Rushton, Eric D. Foster, P. Polgreen
{"title":"哨点监测点布置方法的比较","authors":"Geoffrey Fairchild, Alberto Maria Segre, G. Rushton, Eric D. Foster, P. Polgreen","doi":"10.3402/EHTJ.V4I0.11145","DOIUrl":null,"url":null,"abstract":"Introduction ILI data are collected via an Influenza Sentinel Provider Surveillance Network at the state level. Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic placement. This study analyzes two different geographic placement schemes*a maximal coverage model (MCM) and a K-median model, two location-allocation models commonly used in geographic information systems (GIS) (1). The MCM chooses sites in areas with the densest population. The K-median model chooses sites, which minimize the average distance traveled by individuals to their nearest site. We have previously shown how a placement model can be used to improve population coverage for ILI surveillance in Iowa when considering the sites recruited by the Iowa Department of Public Health (IDPH) (2). We extend this work by evaluating different surveillance placement algorithms with respect to outbreak intensity and timing (i.e., being able to capture the start, peak and end of the influenza season).","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing methods for sentinel surveillance site placement\",\"authors\":\"Geoffrey Fairchild, Alberto Maria Segre, G. Rushton, Eric D. Foster, P. Polgreen\",\"doi\":\"10.3402/EHTJ.V4I0.11145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction ILI data are collected via an Influenza Sentinel Provider Surveillance Network at the state level. Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic placement. This study analyzes two different geographic placement schemes*a maximal coverage model (MCM) and a K-median model, two location-allocation models commonly used in geographic information systems (GIS) (1). The MCM chooses sites in areas with the densest population. The K-median model chooses sites, which minimize the average distance traveled by individuals to their nearest site. We have previously shown how a placement model can be used to improve population coverage for ILI surveillance in Iowa when considering the sites recruited by the Iowa Department of Public Health (IDPH) (2). We extend this work by evaluating different surveillance placement algorithms with respect to outbreak intensity and timing (i.e., being able to capture the start, peak and end of the influenza season).\",\"PeriodicalId\":72898,\"journal\":{\"name\":\"Emerging health threats journal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging health threats journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3402/EHTJ.V4I0.11145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing methods for sentinel surveillance site placement
Introduction ILI data are collected via an Influenza Sentinel Provider Surveillance Network at the state level. Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic placement. This study analyzes two different geographic placement schemes*a maximal coverage model (MCM) and a K-median model, two location-allocation models commonly used in geographic information systems (GIS) (1). The MCM chooses sites in areas with the densest population. The K-median model chooses sites, which minimize the average distance traveled by individuals to their nearest site. We have previously shown how a placement model can be used to improve population coverage for ILI surveillance in Iowa when considering the sites recruited by the Iowa Department of Public Health (IDPH) (2). We extend this work by evaluating different surveillance placement algorithms with respect to outbreak intensity and timing (i.e., being able to capture the start, peak and end of the influenza season).