具有反应混合物的一维可压缩Navier-Stokes方程的接触不连续衰减率

IF 0.5 4区 数学 Q3 MATHEMATICS
Lishuang Peng, Yong Li
{"title":"具有反应混合物的一维可压缩Navier-Stokes方程的接触不连续衰减率","authors":"Lishuang Peng, Yong Li","doi":"10.1063/5.0104769","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the nonlinear stability of contact waves for the Cauchy problem to the compressible Navier–Stokes equations for a reacting mixture in one dimension. If the corresponding Riemann problem for the compressible Euler system admits a contact discontinuity solution, it is shown that the contact wave is nonlinearly stable, while the strength of the contact discontinuity and the initial perturbation are suitably small. Especially, we obtain the convergence rate by using anti-derivative methods and elaborated energy estimates.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"30 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decay rate to contact discontinuities for the one-dimensional compressible Navier–Stokes equations with a reacting mixture\",\"authors\":\"Lishuang Peng, Yong Li\",\"doi\":\"10.1063/5.0104769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the nonlinear stability of contact waves for the Cauchy problem to the compressible Navier–Stokes equations for a reacting mixture in one dimension. If the corresponding Riemann problem for the compressible Euler system admits a contact discontinuity solution, it is shown that the contact wave is nonlinearly stable, while the strength of the contact discontinuity and the initial perturbation are suitably small. Especially, we obtain the convergence rate by using anti-derivative methods and elaborated energy estimates.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0104769\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0104769","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一维反应混合物可压缩Navier-Stokes方程的Cauchy问题中接触波的非线性稳定性。如果可压缩欧拉系统的Riemann问题允许接触不连续解,则表明接触波是非线性稳定的,而接触不连续的强度和初始扰动都适当小。特别地,我们利用不定导数方法和详细的能量估计来获得收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay rate to contact discontinuities for the one-dimensional compressible Navier–Stokes equations with a reacting mixture
In this paper, we investigate the nonlinear stability of contact waves for the Cauchy problem to the compressible Navier–Stokes equations for a reacting mixture in one dimension. If the corresponding Riemann problem for the compressible Euler system admits a contact discontinuity solution, it is shown that the contact wave is nonlinearly stable, while the strength of the contact discontinuity and the initial perturbation are suitably small. Especially, we obtain the convergence rate by using anti-derivative methods and elaborated energy estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信