具有中间1,1-二[(二-4-甲苯胺)苯基]环己烷层的有机/硅-纳米线杂化异质结太阳能电池效率为11%

Chia-Ying Tsai, Po-Han Chen, Yang-Yue Huang, Huai-Te Pen, P. Yu, H. Meng
{"title":"具有中间1,1-二[(二-4-甲苯胺)苯基]环己烷层的有机/硅-纳米线杂化异质结太阳能电池效率为11%","authors":"Chia-Ying Tsai, Po-Han Chen, Yang-Yue Huang, Huai-Te Pen, P. Yu, H. Meng","doi":"10.1109/PVSC.2013.6745155","DOIUrl":null,"url":null,"abstract":"Hybrid organic-inorganic heterojunction solar cells based on silicon nanowires (SiNWs) are promising candidates for next-generation photovoltaics owing to potentials for low fabrication cost and high efficiency. The SiNW array, fabricated by a simple metal-assisted wet chemical etching method, produces a large surface-area-to-volume ratio, hence allowing efficient light harvesting and charge collection via the formation of a core-sheath p-n junction. However, previously reported power conversion efficiencies (PCEs) are approximately capped at 10%, which is largely depicted by the interface defect densities that limit the open-circuit voltage (Voc) and fill factor (FF). In this work, we introduce a solution-processed, intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer to mitigate the interface recombination loss for hybrid heterojunction solar cells consisted of SiNWs and conjugate polymer poly(3,4-ethylenedioxy-thiophene): poly(styrenesulfonate) (PEDOT:PSS). A record PCE of 11.0% is achieved in contrast to 9.6% from a reference counterpart without TAPC, which represents an enhancement factor of 14.2% ascribed to noticeable improvement in the Voc and FF. The result is further supported by examining indicators for the interface quality via a suppressed dark saturation current and an enhanced minority carrier lifetime which exhibits an increase from 84 μsec without TAPC to 87 μsec with TAPC.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"1 1","pages":"3297-3299"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"11%-Efficiency hybrid organic/silicon-nanowire heterojunction solar cell with an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane layer\",\"authors\":\"Chia-Ying Tsai, Po-Han Chen, Yang-Yue Huang, Huai-Te Pen, P. Yu, H. Meng\",\"doi\":\"10.1109/PVSC.2013.6745155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid organic-inorganic heterojunction solar cells based on silicon nanowires (SiNWs) are promising candidates for next-generation photovoltaics owing to potentials for low fabrication cost and high efficiency. The SiNW array, fabricated by a simple metal-assisted wet chemical etching method, produces a large surface-area-to-volume ratio, hence allowing efficient light harvesting and charge collection via the formation of a core-sheath p-n junction. However, previously reported power conversion efficiencies (PCEs) are approximately capped at 10%, which is largely depicted by the interface defect densities that limit the open-circuit voltage (Voc) and fill factor (FF). In this work, we introduce a solution-processed, intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer to mitigate the interface recombination loss for hybrid heterojunction solar cells consisted of SiNWs and conjugate polymer poly(3,4-ethylenedioxy-thiophene): poly(styrenesulfonate) (PEDOT:PSS). A record PCE of 11.0% is achieved in contrast to 9.6% from a reference counterpart without TAPC, which represents an enhancement factor of 14.2% ascribed to noticeable improvement in the Voc and FF. The result is further supported by examining indicators for the interface quality via a suppressed dark saturation current and an enhanced minority carrier lifetime which exhibits an increase from 84 μsec without TAPC to 87 μsec with TAPC.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"1 1\",\"pages\":\"3297-3299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6745155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6745155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于硅纳米线(SiNWs)的有机-无机异质结杂化太阳能电池具有低制造成本和高效率的潜力,是下一代光伏电池的理想选择。通过简单的金属辅助湿化学蚀刻方法制造的SiNW阵列产生了大的表面积与体积比,因此可以通过形成核心-鞘层p-n结来实现高效的光收集和电荷收集。然而,先前报道的功率转换效率(pce)大约限制在10%,这主要是由限制开路电压(Voc)和填充因子(FF)的界面缺陷密度所描述的。在这项工作中,我们引入了一种溶液处理的中间1,1-二[(二-4-甲苯胺)苯基]环己烷(TAPC)层,以减轻由SiNWs和共轭聚合物聚(3,4-乙烯二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)组成的杂化异质结太阳能电池的界面重组损失。PCE达到创纪录的11.0%,相比之下,没有TAPC的参考产品的PCE为9.6%,这代表了14.2%的增强因子,归因于Voc和FF的显著改善。通过对暗饱和电流的抑制和对少数载流子寿命的提高(从未加TAPC时的84 μsec提高到加TAPC后的87 μsec)来检测界面质量指标,进一步支持了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
11%-Efficiency hybrid organic/silicon-nanowire heterojunction solar cell with an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane layer
Hybrid organic-inorganic heterojunction solar cells based on silicon nanowires (SiNWs) are promising candidates for next-generation photovoltaics owing to potentials for low fabrication cost and high efficiency. The SiNW array, fabricated by a simple metal-assisted wet chemical etching method, produces a large surface-area-to-volume ratio, hence allowing efficient light harvesting and charge collection via the formation of a core-sheath p-n junction. However, previously reported power conversion efficiencies (PCEs) are approximately capped at 10%, which is largely depicted by the interface defect densities that limit the open-circuit voltage (Voc) and fill factor (FF). In this work, we introduce a solution-processed, intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer to mitigate the interface recombination loss for hybrid heterojunction solar cells consisted of SiNWs and conjugate polymer poly(3,4-ethylenedioxy-thiophene): poly(styrenesulfonate) (PEDOT:PSS). A record PCE of 11.0% is achieved in contrast to 9.6% from a reference counterpart without TAPC, which represents an enhancement factor of 14.2% ascribed to noticeable improvement in the Voc and FF. The result is further supported by examining indicators for the interface quality via a suppressed dark saturation current and an enhanced minority carrier lifetime which exhibits an increase from 84 μsec without TAPC to 87 μsec with TAPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信