柔性碳化硅纳米线网络原型器件的直接转移制造

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
M. S. Onder, K. Teker
{"title":"柔性碳化硅纳米线网络原型器件的直接转移制造","authors":"M. S. Onder, K. Teker","doi":"10.4028/p-d0o9il","DOIUrl":null,"url":null,"abstract":"Flexible and transparent devices are expected to meet increasing consumer demands for upgrades in wearable devices, smart electronic and photonic applications. In this work, nano-manufacturing of a flexible and powerless silicon carbide nanowire network ultraviolet photodetector (SiCNW-network UVPD) prototype was investigated by a very cost-effective direct transfer method. Indeed, the powerless device exhibited a photo-to-dark current ratio (PDCR) of 15 with a responsivity of 5.92 mA/W at 254 nm wavelength exposure. The reliability and durability of the device was evaluated by bending tests. In fact, the PDCR of the device was still very good even after seventy-five bending cycles (~ 96 % of the rest state). In brief, our flexible, powerless SiCNW-network UVPD device with cost-effectiveness, good performance, and durability can provide feasible alternatives for new generation wearable optoelectronic products.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"8 1","pages":"49 - 58"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Transfer Manufacturing of Flexible Silicon Carbide Nanowire-Network Prototype Device\",\"authors\":\"M. S. Onder, K. Teker\",\"doi\":\"10.4028/p-d0o9il\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible and transparent devices are expected to meet increasing consumer demands for upgrades in wearable devices, smart electronic and photonic applications. In this work, nano-manufacturing of a flexible and powerless silicon carbide nanowire network ultraviolet photodetector (SiCNW-network UVPD) prototype was investigated by a very cost-effective direct transfer method. Indeed, the powerless device exhibited a photo-to-dark current ratio (PDCR) of 15 with a responsivity of 5.92 mA/W at 254 nm wavelength exposure. The reliability and durability of the device was evaluated by bending tests. In fact, the PDCR of the device was still very good even after seventy-five bending cycles (~ 96 % of the rest state). In brief, our flexible, powerless SiCNW-network UVPD device with cost-effectiveness, good performance, and durability can provide feasible alternatives for new generation wearable optoelectronic products.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"8 1\",\"pages\":\"49 - 58\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-d0o9il\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-d0o9il","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

灵活和透明的设备有望满足消费者对可穿戴设备,智能电子和光子应用升级的日益增长的需求。在这项工作中,研究了柔性和无功率碳化硅纳米线网络紫外线探测器(SiCNW-network UVPD)原型的纳米制造方法。事实上,无功率器件在254 nm波长下的光暗电流比(PDCR)为15,响应度为5.92 mA/W。通过弯曲试验对该装置的可靠性和耐久性进行了评价。事实上,即使经过75次弯曲循环(~ 96%的休息状态),该装置的PDCR仍然很好。总之,我们的柔性无功率sicnw网络UVPD器件具有成本效益、良好的性能和耐用性,可以为新一代可穿戴光电产品提供可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Transfer Manufacturing of Flexible Silicon Carbide Nanowire-Network Prototype Device
Flexible and transparent devices are expected to meet increasing consumer demands for upgrades in wearable devices, smart electronic and photonic applications. In this work, nano-manufacturing of a flexible and powerless silicon carbide nanowire network ultraviolet photodetector (SiCNW-network UVPD) prototype was investigated by a very cost-effective direct transfer method. Indeed, the powerless device exhibited a photo-to-dark current ratio (PDCR) of 15 with a responsivity of 5.92 mA/W at 254 nm wavelength exposure. The reliability and durability of the device was evaluated by bending tests. In fact, the PDCR of the device was still very good even after seventy-five bending cycles (~ 96 % of the rest state). In brief, our flexible, powerless SiCNW-network UVPD device with cost-effectiveness, good performance, and durability can provide feasible alternatives for new generation wearable optoelectronic products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信