riccti型矩阵方程的迭代和加倍算法:比较介绍

Q1 Mathematics
Federico Poloni
{"title":"riccti型矩阵方程的迭代和加倍算法:比较介绍","authors":"Federico Poloni","doi":"10.1002/gamm.202000018","DOIUrl":null,"url":null,"abstract":"<p>We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of <i>doubling</i>: they construct the iterate <math>\n <mrow>\n <msub>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n </mrow></math> of another naturally-arising fixed-point iteration <span>(<i>X</i><sub><i>h</i></sub>)</span> via a sort of repeated squaring. The equations we consider are Stein equations <span><i>X</i> − <i>A</i><sup>∗</sup> <i>X A</i> = <i>Q</i></span>, Lyapunov equations <span><i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> + <i>Q</i> = 0</span>, discrete-time algebraic Riccati equations <span><i>X</i> = <i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i>(<i>I</i> + <i>G X</i>)<sup>−1</sup><i>A</i></span>, continuous-time algebraic Riccati equations <span><i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> − <i>X G X</i> = 0</span>, palindromic quadratic matrix equations <span><i>A</i> + <i>Q Y</i> + <i>A</i><sup>∗</sup><i>Y</i><sup>2</sup> = 0</span>, and nonlinear matrix equations <span><i>X</i> + <i>A</i><sup>∗</sup> <i>X</i><sup>−1</sup><i>A</i> = <i>Q</i></span>. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000018","citationCount":"0","resultStr":"{\"title\":\"Iterative and doubling algorithms for Riccati-type matrix equations: A comparative introduction\",\"authors\":\"Federico Poloni\",\"doi\":\"10.1002/gamm.202000018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of <i>doubling</i>: they construct the iterate <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Q</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n </mrow></math> of another naturally-arising fixed-point iteration <span>(<i>X</i><sub><i>h</i></sub>)</span> via a sort of repeated squaring. The equations we consider are Stein equations <span><i>X</i> − <i>A</i><sup>∗</sup> <i>X A</i> = <i>Q</i></span>, Lyapunov equations <span><i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> + <i>Q</i> = 0</span>, discrete-time algebraic Riccati equations <span><i>X</i> = <i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i>(<i>I</i> + <i>G X</i>)<sup>−1</sup><i>A</i></span>, continuous-time algebraic Riccati equations <span><i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> − <i>X G X</i> = 0</span>, palindromic quadratic matrix equations <span><i>A</i> + <i>Q Y</i> + <i>A</i><sup>∗</sup><i>Y</i><sup>2</sup> = 0</span>, and nonlinear matrix equations <span><i>X</i> + <i>A</i><sup>∗</sup> <i>X</i><sup>−1</sup><i>A</i> = <i>Q</i></span>. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.202000018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了李雅普诺夫和里卡蒂型方程的一系列算法,它们都是通过加倍的思想相互关联的:它们构造迭代Q k = X 2k另一个自然产生的不动点迭代(Xh)通过一种重复平方。我们考虑的方程是Stein方程X−A∗X A = Q, Lyapunov方程A * X + X A + Q = 0,离散时间代数Riccati方程X = Q + A∗X(I + G X)−1A,连续时间代数Riccati方程Q + A∗X + X A−X G X = 0,回文二次矩阵方程A + Q Y + A∗Y2 = 0,以及非线性矩阵方程X + A∗X−1A = Q。我们对这些算法进行了比较,强调了它们与其他算法(如子空间迭代)之间的联系,并讨论了它们理论中的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative and doubling algorithms for Riccati-type matrix equations: A comparative introduction

We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of doubling: they construct the iterate Q k = X 2 k of another naturally-arising fixed-point iteration (Xh) via a sort of repeated squaring. The equations we consider are Stein equations X − A X A = Q, Lyapunov equations A X + X A + Q = 0, discrete-time algebraic Riccati equations X = Q + A X(I + G X)−1A, continuous-time algebraic Riccati equations Q + A X + X A − X G X = 0, palindromic quadratic matrix equations A + Q Y + AY2 = 0, and nonlinear matrix equations X + A X−1A = Q. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信