通过鉴定控制差异基因表达的启动子特征解剖网络基序

O. Harari, I. Zwir
{"title":"通过鉴定控制差异基因表达的启动子特征解剖网络基序","authors":"O. Harari, I. Zwir","doi":"10.1145/1357910.1358036","DOIUrl":null,"url":null,"abstract":"One of the biggest challenges in genomics is the elucidation of the design principles controlling gene expression. Current approaches examine promoter sequences for particular features, such as the presence of binding sites for a transcriptional regulator, and identify recurrent relationships among these features termed network motifs. To define the expression dynamics of a group of genes, the strength of the connections in a network must be specified, and these are determined by the cis-promoter features participating in the regulation. Approaches that homogenize features among promoters (e.g., relying on consensuses to describe the various promoter features) and even across species hamper the discovery of the key differences that distinguish promoters that are co-regulated by the same transcriptional regulator. Thus, we have developed a an approach based on fuzzy logic expressions to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We applied our method to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identify key features that that enable the PhoP protein to produce differential regulation in target genes, reflecting distinct kinetic patterns even for the same type of network motif. These findings could not have been uncovered just by inspecting network architecture. We show that the same approach can be generalized to model other regulatory systems.","PeriodicalId":91410,"journal":{"name":"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)","volume":"10 1","pages":"817-826"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissecting network motifs by identifying promoter features that govern differential gene expression\",\"authors\":\"O. Harari, I. Zwir\",\"doi\":\"10.1145/1357910.1358036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the biggest challenges in genomics is the elucidation of the design principles controlling gene expression. Current approaches examine promoter sequences for particular features, such as the presence of binding sites for a transcriptional regulator, and identify recurrent relationships among these features termed network motifs. To define the expression dynamics of a group of genes, the strength of the connections in a network must be specified, and these are determined by the cis-promoter features participating in the regulation. Approaches that homogenize features among promoters (e.g., relying on consensuses to describe the various promoter features) and even across species hamper the discovery of the key differences that distinguish promoters that are co-regulated by the same transcriptional regulator. Thus, we have developed a an approach based on fuzzy logic expressions to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We applied our method to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identify key features that that enable the PhoP protein to produce differential regulation in target genes, reflecting distinct kinetic patterns even for the same type of network motif. These findings could not have been uncovered just by inspecting network architecture. We show that the same approach can be generalized to model other regulatory systems.\",\"PeriodicalId\":91410,\"journal\":{\"name\":\"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)\",\"volume\":\"10 1\",\"pages\":\"817-826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1357910.1358036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1357910.1358036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因组学最大的挑战之一是阐明控制基因表达的设计原则。目前的方法检查启动子序列的特定特征,如转录调节因子的结合位点的存在,并确定这些特征之间的循环关系,称为网络基序。为了定义一组基因的表达动态,必须指定网络中连接的强度,而这些是由参与调节的顺式启动子特征决定的。将启动子之间的特征同质化(例如,依靠共识来描述各种启动子特征)甚至跨物种的方法阻碍了发现区分由相同转录调节因子共同调节的启动子的关键差异。因此,我们开发了一种基于模糊逻辑表达式的方法来分析蛋白质细菌基因组的启动子特征,该方法专门用于解释差异基因表达固有的序列、位置和拓扑结构的可变性。我们利用我们的方法对大肠杆菌和肠炎沙门氏菌血清型鼠伤寒杆菌PhoP/PhoQ调控系统控制的网络基序进行了表征。我们确定了使PhoP蛋白在靶基因中产生差异调节的关键特征,即使对于相同类型的网络基序,也反映了不同的动力学模式。这些发现不可能仅仅通过检查网络架构来发现。我们表明,同样的方法可以推广到其他监管系统的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissecting network motifs by identifying promoter features that govern differential gene expression
One of the biggest challenges in genomics is the elucidation of the design principles controlling gene expression. Current approaches examine promoter sequences for particular features, such as the presence of binding sites for a transcriptional regulator, and identify recurrent relationships among these features termed network motifs. To define the expression dynamics of a group of genes, the strength of the connections in a network must be specified, and these are determined by the cis-promoter features participating in the regulation. Approaches that homogenize features among promoters (e.g., relying on consensuses to describe the various promoter features) and even across species hamper the discovery of the key differences that distinguish promoters that are co-regulated by the same transcriptional regulator. Thus, we have developed a an approach based on fuzzy logic expressions to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We applied our method to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identify key features that that enable the PhoP protein to produce differential regulation in target genes, reflecting distinct kinetic patterns even for the same type of network motif. These findings could not have been uncovered just by inspecting network architecture. We show that the same approach can be generalized to model other regulatory systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信