{"title":"从轨道数据构造模块类别","authors":"Vincentas Mulevičius, I. Runkel","doi":"10.4171/qt/170","DOIUrl":null,"url":null,"abstract":"In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\\mathbb{A}$ in a modular fusion category $\\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\\mathbb{A}$ in $\\mathcal{C}$, we introduce a ribbon category $\\mathcal{C}_{\\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\\mathcal{C}_{\\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\\mathbb{A}$ is given by a simple commutative $\\Delta$-separable Frobenius algebra $A$ in $\\mathcal{C}$; (ii) when $\\mathbb{A}$ is an orbifold datum in $\\mathcal{C} = \\operatorname{Vect}$, built from a spherical fusion category $\\mathcal{S}$. We show that in case (i), $\\mathcal{C}_{\\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\\mathcal{S}$. The category $\\mathcal{C}_{\\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Constructing modular categories from orbifold data\",\"authors\":\"Vincentas Mulevičius, I. Runkel\",\"doi\":\"10.4171/qt/170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\\\\mathbb{A}$ in a modular fusion category $\\\\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\\\\mathbb{A}$ in $\\\\mathcal{C}$, we introduce a ribbon category $\\\\mathcal{C}_{\\\\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\\\\mathcal{C}_{\\\\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\\\\mathbb{A}$ is given by a simple commutative $\\\\Delta$-separable Frobenius algebra $A$ in $\\\\mathcal{C}$; (ii) when $\\\\mathbb{A}$ is an orbifold datum in $\\\\mathcal{C} = \\\\operatorname{Vect}$, built from a spherical fusion category $\\\\mathcal{S}$. We show that in case (i), $\\\\mathcal{C}_{\\\\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\\\\mathcal{S}$. The category $\\\\mathcal{C}_{\\\\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/170\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/170","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10
摘要
在Carqueville et al., arXiv:1809.01483中,作为Reshetikhin-Turaev tqft的广义轨道构造的一部分,引入了模融合范畴$\mathcal{A}$中的轨道基准$\mathbb{A}$的概念。本文给出了$\mathcal{C}$中的一个简单的轨道基准$\mathbb{a}$,引入了一个带状范畴$\mathcal{C}_{\mathbb{a}}$,并证明了它也是一个模融合范畴。$\mathcal{C}_{\mathbb{A}}$的定义是由广义轨道折中的Wilson线的性质所激发的。我们详细地分析了两个例子:(i)当$\mathbb{A}$由一个简单交换$\Delta$-可分Frobenius代数$A$在$\mathcal{C}$中给出;(ii)当$\mathbb{A}$是$\mathcal{C} = \operatorname{Vect}$中的一个轨道基准时,从一个球面融合类别$\mathcal{S}$中构建。我们证明了在情形(i)下,$\mathcal{C}_{\mathbb{A}}$与$A$的局部模的范畴是带状等价的,在情形(ii)下,与$\mathcal{S}$的德林菲尔德中心是带状等价的。范畴$\mathcal{C}_{\mathbb{A}}$因此将这两个结构统一为一个代数设置。
Constructing modular categories from orbifold data
In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\mathbb{A}$ in a modular fusion category $\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\mathbb{A}$ in $\mathcal{C}$, we introduce a ribbon category $\mathcal{C}_{\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\mathcal{C}_{\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\mathbb{A}$ is given by a simple commutative $\Delta$-separable Frobenius algebra $A$ in $\mathcal{C}$; (ii) when $\mathbb{A}$ is an orbifold datum in $\mathcal{C} = \operatorname{Vect}$, built from a spherical fusion category $\mathcal{S}$. We show that in case (i), $\mathcal{C}_{\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\mathcal{S}$. The category $\mathcal{C}_{\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.