红外吸收非侵入式硅温度测量的物理建模

J. Sturm, C. Reaves
{"title":"红外吸收非侵入式硅温度测量的物理建模","authors":"J. Sturm, C. Reaves","doi":"10.1109/IEDM.1991.235281","DOIUrl":null,"url":null,"abstract":"It has recently been shown that the temperature of silicon wafers can be measured in situ in rapid thermal processing reactors by monitoring the infrared absorption of the substrate at specific wavelengths. In the present work, a physical model of infrared absorption in silicon is used to determine the dominant absorption mechanisms in the relevant temperature and wavelength ranges. The model is then used to predict the ultimate temperature ranges of applicability of the technique and to show the effects of heavy doping. Since free carrier absorption dominates at wavelengths over 1.55 mu m, approximately 850 degrees C may be estimated as an upper limit for the technique of silicon temperature measurement by infrared transmission. Because bandgap absorption dominates at short wavelengths, the technique may be extended to temperatures as low as 77 K.<<ETX>>","PeriodicalId":13885,"journal":{"name":"International Electron Devices Meeting 1991 [Technical Digest]","volume":"2000 1","pages":"895-898"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physical modelling of non-invasive silicon temperature measurement by infrared absorption\",\"authors\":\"J. Sturm, C. Reaves\",\"doi\":\"10.1109/IEDM.1991.235281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has recently been shown that the temperature of silicon wafers can be measured in situ in rapid thermal processing reactors by monitoring the infrared absorption of the substrate at specific wavelengths. In the present work, a physical model of infrared absorption in silicon is used to determine the dominant absorption mechanisms in the relevant temperature and wavelength ranges. The model is then used to predict the ultimate temperature ranges of applicability of the technique and to show the effects of heavy doping. Since free carrier absorption dominates at wavelengths over 1.55 mu m, approximately 850 degrees C may be estimated as an upper limit for the technique of silicon temperature measurement by infrared transmission. Because bandgap absorption dominates at short wavelengths, the technique may be extended to temperatures as low as 77 K.<<ETX>>\",\"PeriodicalId\":13885,\"journal\":{\"name\":\"International Electron Devices Meeting 1991 [Technical Digest]\",\"volume\":\"2000 1\",\"pages\":\"895-898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting 1991 [Technical Digest]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.1991.235281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting 1991 [Technical Digest]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1991.235281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近有研究表明,通过监测衬底在特定波长的红外吸收,可以在快速热加工反应器中原位测量硅片的温度。在本工作中,利用硅的红外吸收物理模型来确定在相关温度和波长范围内的主要吸收机制。然后用该模型预测了该技术的最终适用温度范围,并显示了重掺杂的影响。由于自由载流子吸收在1.55 μ m以上的波长处占主导地位,因此可以估计850℃左右是红外透射硅测温技术的上限。由于带隙吸收在短波长占主导地位,该技术可以扩展到低至77 k的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical modelling of non-invasive silicon temperature measurement by infrared absorption
It has recently been shown that the temperature of silicon wafers can be measured in situ in rapid thermal processing reactors by monitoring the infrared absorption of the substrate at specific wavelengths. In the present work, a physical model of infrared absorption in silicon is used to determine the dominant absorption mechanisms in the relevant temperature and wavelength ranges. The model is then used to predict the ultimate temperature ranges of applicability of the technique and to show the effects of heavy doping. Since free carrier absorption dominates at wavelengths over 1.55 mu m, approximately 850 degrees C may be estimated as an upper limit for the technique of silicon temperature measurement by infrared transmission. Because bandgap absorption dominates at short wavelengths, the technique may be extended to temperatures as low as 77 K.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信