旋转倒立摆系统稳定的模糊协同控制

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yujue Wang, Weining Mao, Qing Wang, Bingyan Xin
{"title":"旋转倒立摆系统稳定的模糊协同控制","authors":"Yujue Wang, Weining Mao, Qing Wang, Bingyan Xin","doi":"10.20965/jaciii.2023.p0360","DOIUrl":null,"url":null,"abstract":"The rotating inverted pendulum is a nonlinear, multivariate, strongly coupled unstable system, and studying it can effectively reflect many typical control problems. In this paper, a parameter self-tuning fuzzy controller is proposed to perform the balance control of a single rotating inverted pendulum. Particle swarm optimization is used to adjust its control parameters, and simulation experiments are performed to show that the system can achieve stability with the designed parametric self-tuning fuzzy controller, with control performance better than that of the conventional fuzzy controller. Furthermore, the leader-follower control strategy is used to realize the cooperative control of multiple rotating inverted pendulums. Two QUBE-Servo 2 rotating inverted pendulums are used for a cooperative pendulum swing-up experiment and stabilization experiment, and the effectiveness of the proposed cooperative control strategy is verified.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"17 1","pages":"360-371"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Cooperative Control for the Stabilization of the Rotating Inverted Pendulum System\",\"authors\":\"Yujue Wang, Weining Mao, Qing Wang, Bingyan Xin\",\"doi\":\"10.20965/jaciii.2023.p0360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotating inverted pendulum is a nonlinear, multivariate, strongly coupled unstable system, and studying it can effectively reflect many typical control problems. In this paper, a parameter self-tuning fuzzy controller is proposed to perform the balance control of a single rotating inverted pendulum. Particle swarm optimization is used to adjust its control parameters, and simulation experiments are performed to show that the system can achieve stability with the designed parametric self-tuning fuzzy controller, with control performance better than that of the conventional fuzzy controller. Furthermore, the leader-follower control strategy is used to realize the cooperative control of multiple rotating inverted pendulums. Two QUBE-Servo 2 rotating inverted pendulums are used for a cooperative pendulum swing-up experiment and stabilization experiment, and the effectiveness of the proposed cooperative control strategy is verified.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"17 1\",\"pages\":\"360-371\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

旋转倒立摆是一个非线性、多变量、强耦合的不稳定系统,研究它可以有效地反映许多典型的控制问题。本文提出了一种参数自整定模糊控制器,用于对单个旋转倒立摆进行平衡控制。采用粒子群算法对其控制参数进行调整,仿真实验表明,所设计的参数自整定模糊控制器能使系统达到稳定状态,控制性能优于传统模糊控制器。在此基础上,采用leader-follower控制策略实现了多个旋转倒立摆的协同控制。利用两个QUBE-Servo - 2旋转倒立摆进行了协同摆起实验和稳定实验,验证了所提协同控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Cooperative Control for the Stabilization of the Rotating Inverted Pendulum System
The rotating inverted pendulum is a nonlinear, multivariate, strongly coupled unstable system, and studying it can effectively reflect many typical control problems. In this paper, a parameter self-tuning fuzzy controller is proposed to perform the balance control of a single rotating inverted pendulum. Particle swarm optimization is used to adjust its control parameters, and simulation experiments are performed to show that the system can achieve stability with the designed parametric self-tuning fuzzy controller, with control performance better than that of the conventional fuzzy controller. Furthermore, the leader-follower control strategy is used to realize the cooperative control of multiple rotating inverted pendulums. Two QUBE-Servo 2 rotating inverted pendulums are used for a cooperative pendulum swing-up experiment and stabilization experiment, and the effectiveness of the proposed cooperative control strategy is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信