变径变间距动态玉米种子脱粒输送过程分析及性能试验

IF 2.2 2区 农林科学 Q2 AGRICULTURAL ENGINEERING
Fei Dai, Yuanxiang Liu, Ruijie Shi, Yiming Zhao, Shanglong Xin, Qiufeng Fu, Wuyun Zhao
{"title":"变径变间距动态玉米种子脱粒输送过程分析及性能试验","authors":"Fei Dai, Yuanxiang Liu, Ruijie Shi, Yiming Zhao, Shanglong Xin, Qiufeng Fu, Wuyun Zhao","doi":"10.25165/j.ijabe.20231602.7741","DOIUrl":null,"url":null,"abstract":": In order to further reduce the damage rate in threshing seed corn, a seed corn threshing testbed with variable diameter and spacing that can realize dynamic adjustment of parameters, such as feed quantity, rotating speed of the threshing device, threshing spacing of the threshing units, was designed in this research. The software of finite element analysis ANSYS Workbench was applied to do modal analysis on the threshing axis designed for variable diameter and spacing of seed corn. The first 8 orders of natural frequencies were distributed in 201.12-1640.20 Hz, with corresponding vibration amplitude in 5.86-27.04 mm, showing reasonable structural design of the threshing axis, which could realize effective seed corn threshing and conveying. Discrete element method was applied to do simulation analysis on the seed corn threshing and conveying process with variable diameter and spacing. Under the condition of different feed quantity, different rotating speed of the thresher, the moving speed of corn clusters and contact force among clusters were measured through simulation, and the working characteristics of the threshing testbed for low-damage and dynamic threshing and conveying of seed corn with variable diameter and spacing were revealed. Working performance test results of the testbed of seed corn with variable diameter and spacing showed that, when the rotating speed of the threshing axis was 190-290 r/min, feed quantity was 1.80-3.80 kg/s, the damage rate of seed corn was 0.32%-0.63%, threshing rate was 99.20%-99.82%, and content impurity rate was 4.23%-5.86%, the mass of threshed corn grains first increased and then decreased along the axial direction. The test verification process was in line with the simulation results; thus, the test results could satisfy the requirements in design and actual operation.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and performance test on dynamic seed corn threshing and conveying process with variable diameter and spacing\",\"authors\":\"Fei Dai, Yuanxiang Liu, Ruijie Shi, Yiming Zhao, Shanglong Xin, Qiufeng Fu, Wuyun Zhao\",\"doi\":\"10.25165/j.ijabe.20231602.7741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In order to further reduce the damage rate in threshing seed corn, a seed corn threshing testbed with variable diameter and spacing that can realize dynamic adjustment of parameters, such as feed quantity, rotating speed of the threshing device, threshing spacing of the threshing units, was designed in this research. The software of finite element analysis ANSYS Workbench was applied to do modal analysis on the threshing axis designed for variable diameter and spacing of seed corn. The first 8 orders of natural frequencies were distributed in 201.12-1640.20 Hz, with corresponding vibration amplitude in 5.86-27.04 mm, showing reasonable structural design of the threshing axis, which could realize effective seed corn threshing and conveying. Discrete element method was applied to do simulation analysis on the seed corn threshing and conveying process with variable diameter and spacing. Under the condition of different feed quantity, different rotating speed of the thresher, the moving speed of corn clusters and contact force among clusters were measured through simulation, and the working characteristics of the threshing testbed for low-damage and dynamic threshing and conveying of seed corn with variable diameter and spacing were revealed. Working performance test results of the testbed of seed corn with variable diameter and spacing showed that, when the rotating speed of the threshing axis was 190-290 r/min, feed quantity was 1.80-3.80 kg/s, the damage rate of seed corn was 0.32%-0.63%, threshing rate was 99.20%-99.82%, and content impurity rate was 4.23%-5.86%, the mass of threshed corn grains first increased and then decreased along the axial direction. The test verification process was in line with the simulation results; thus, the test results could satisfy the requirements in design and actual operation.\",\"PeriodicalId\":13895,\"journal\":{\"name\":\"International Journal of Agricultural and Biological Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Biological Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.25165/j.ijabe.20231602.7741\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231602.7741","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步降低种子玉米脱粒过程中的损失率,本研究设计了一种可实现进料量、脱粒装置转速、脱粒单元间距等参数动态调节的变径变间距种子玉米脱粒试验台。采用有限元分析软件ANSYS Workbench对变径变间距种子玉米脱粒轴进行了模态分析。前8阶固有频率分布在201.12-1640.20 Hz之间,振动幅值在5.86-27.04 mm之间,说明脱粒轴结构设计合理,能够实现种子玉米的有效脱粒和输送。采用离散元法对变直径、变间距的玉米种子脱粒和输送过程进行了仿真分析。在不同进料量、不同脱粒机转速的条件下,通过仿真测量了玉米团簇的移动速度和团簇之间的接触力,揭示了变直径、变间距玉米种子低损伤动态脱粒输送试验台的工作特性。变径变间距种子玉米试验台工作性能试验结果表明,当脱粒轴转速为190 ~ 290 r/min,投料量为1.80 ~ 3.80 kg/s,种子玉米破损率为0.32% ~ 0.63%,脱粒率为99.20% ~ 99.82%,杂质含量为4.23% ~ 5.86%时,脱粒玉米籽粒质量沿轴向先增后减。试验验证过程与仿真结果一致;试验结果满足设计和实际运行的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and performance test on dynamic seed corn threshing and conveying process with variable diameter and spacing
: In order to further reduce the damage rate in threshing seed corn, a seed corn threshing testbed with variable diameter and spacing that can realize dynamic adjustment of parameters, such as feed quantity, rotating speed of the threshing device, threshing spacing of the threshing units, was designed in this research. The software of finite element analysis ANSYS Workbench was applied to do modal analysis on the threshing axis designed for variable diameter and spacing of seed corn. The first 8 orders of natural frequencies were distributed in 201.12-1640.20 Hz, with corresponding vibration amplitude in 5.86-27.04 mm, showing reasonable structural design of the threshing axis, which could realize effective seed corn threshing and conveying. Discrete element method was applied to do simulation analysis on the seed corn threshing and conveying process with variable diameter and spacing. Under the condition of different feed quantity, different rotating speed of the thresher, the moving speed of corn clusters and contact force among clusters were measured through simulation, and the working characteristics of the threshing testbed for low-damage and dynamic threshing and conveying of seed corn with variable diameter and spacing were revealed. Working performance test results of the testbed of seed corn with variable diameter and spacing showed that, when the rotating speed of the threshing axis was 190-290 r/min, feed quantity was 1.80-3.80 kg/s, the damage rate of seed corn was 0.32%-0.63%, threshing rate was 99.20%-99.82%, and content impurity rate was 4.23%-5.86%, the mass of threshed corn grains first increased and then decreased along the axial direction. The test verification process was in line with the simulation results; thus, the test results could satisfy the requirements in design and actual operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
88
审稿时长
24 weeks
期刊介绍: International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信