扩展精度对数算法

J. N. Coleman, J. Kadlec
{"title":"扩展精度对数算法","authors":"J. N. Coleman, J. Kadlec","doi":"10.1109/ACSSC.2000.910929","DOIUrl":null,"url":null,"abstract":"We present a technique with which arithmetic implemented in the logarithmic number system may be performed at considerably higher precision than normally available at 32 bits, with little additional hardware or execution time. Use of the technique requires that all data lie in a restricted range, and relies on scaling each such value into the maximum range of the number system. We illustrate the procedure using a recursive least squares algorithm. We show that the restriction is easily accommodated, and that the technique can yield very substantial gains in accuracy and numerical stability over 32-bit floating-point.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"18 1","pages":"124-129 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Extended precision logarithmic arithmetic\",\"authors\":\"J. N. Coleman, J. Kadlec\",\"doi\":\"10.1109/ACSSC.2000.910929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a technique with which arithmetic implemented in the logarithmic number system may be performed at considerably higher precision than normally available at 32 bits, with little additional hardware or execution time. Use of the technique requires that all data lie in a restricted range, and relies on scaling each such value into the maximum range of the number system. We illustrate the procedure using a recursive least squares algorithm. We show that the restriction is easily accommodated, and that the technique can yield very substantial gains in accuracy and numerical stability over 32-bit floating-point.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"18 1\",\"pages\":\"124-129 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种技术,在对数系统中实现的算术可以以比通常可用的32位更高的精度执行,而很少额外的硬件或执行时间。该技术的使用要求所有数据都在一个有限的范围内,并依赖于将每个这样的值缩放到数字系统的最大范围内。我们用递归最小二乘算法来说明这个过程。我们证明了这个限制是很容易适应的,并且该技术在精度和数值稳定性方面比32位浮点数有很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended precision logarithmic arithmetic
We present a technique with which arithmetic implemented in the logarithmic number system may be performed at considerably higher precision than normally available at 32 bits, with little additional hardware or execution time. Use of the technique requires that all data lie in a restricted range, and relies on scaling each such value into the maximum range of the number system. We illustrate the procedure using a recursive least squares algorithm. We show that the restriction is easily accommodated, and that the technique can yield very substantial gains in accuracy and numerical stability over 32-bit floating-point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信