J. Rasmussen, Helena Kallestrup, K. Thiemer, Anette Baisner Alnøe, Lisbeth Dalsgaard Henriksen, S. Larsen, A. Baattrup‐Pedersen
{"title":"不同除草方式对低地溪流物理和水文形态条件的影响","authors":"J. Rasmussen, Helena Kallestrup, K. Thiemer, Anette Baisner Alnøe, Lisbeth Dalsgaard Henriksen, S. Larsen, A. Baattrup‐Pedersen","doi":"10.1051/KMAE/2021009","DOIUrl":null,"url":null,"abstract":"Climate change has increased the frequency and intensity of stream flooding events. In response, managing authorities may increase frequency and intensity of aquatic plant removal (weed cutting) to lower the water level in rivers possibly impairing physical and hydromorphological stream conditions. We studied 32 Danish lowland streams subjected to three different weed cutting practices, representing a gradient in weed cutting intensity, and uncut controls to compare physical and hydromorphological habitat quality parameters among stream groups. Moreover, we measured short-term changes in dissolved oxygen (DO) concentrations and suspended sediment (SS) transport in two streams before, during, and just after weed cutting for the least and most pervasive weed cutting method, respectively. Our results indicated a lower habitat quality affiliated with increasing intensity of weed cutting practice, notably an association with silt cover at the expense of hard substrate. DO concentrations were relatively unaltered but an abrupt increase in SS transport comparable to storm events was observed during cutting with the most pervasive method. Our results indicate that ecological and hydromorphological effects of high intensity weed cutting should be carefully studied and considered before large scale implementation.","PeriodicalId":54748,"journal":{"name":"Knowledge and Management of Aquatic Ecosystems","volume":"31 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effects of different weed cutting methods on physical and hydromorphological conditions in lowland streams\",\"authors\":\"J. Rasmussen, Helena Kallestrup, K. Thiemer, Anette Baisner Alnøe, Lisbeth Dalsgaard Henriksen, S. Larsen, A. Baattrup‐Pedersen\",\"doi\":\"10.1051/KMAE/2021009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change has increased the frequency and intensity of stream flooding events. In response, managing authorities may increase frequency and intensity of aquatic plant removal (weed cutting) to lower the water level in rivers possibly impairing physical and hydromorphological stream conditions. We studied 32 Danish lowland streams subjected to three different weed cutting practices, representing a gradient in weed cutting intensity, and uncut controls to compare physical and hydromorphological habitat quality parameters among stream groups. Moreover, we measured short-term changes in dissolved oxygen (DO) concentrations and suspended sediment (SS) transport in two streams before, during, and just after weed cutting for the least and most pervasive weed cutting method, respectively. Our results indicated a lower habitat quality affiliated with increasing intensity of weed cutting practice, notably an association with silt cover at the expense of hard substrate. DO concentrations were relatively unaltered but an abrupt increase in SS transport comparable to storm events was observed during cutting with the most pervasive method. Our results indicate that ecological and hydromorphological effects of high intensity weed cutting should be carefully studied and considered before large scale implementation.\",\"PeriodicalId\":54748,\"journal\":{\"name\":\"Knowledge and Management of Aquatic Ecosystems\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Management of Aquatic Ecosystems\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1051/KMAE/2021009\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Management of Aquatic Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/KMAE/2021009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Effects of different weed cutting methods on physical and hydromorphological conditions in lowland streams
Climate change has increased the frequency and intensity of stream flooding events. In response, managing authorities may increase frequency and intensity of aquatic plant removal (weed cutting) to lower the water level in rivers possibly impairing physical and hydromorphological stream conditions. We studied 32 Danish lowland streams subjected to three different weed cutting practices, representing a gradient in weed cutting intensity, and uncut controls to compare physical and hydromorphological habitat quality parameters among stream groups. Moreover, we measured short-term changes in dissolved oxygen (DO) concentrations and suspended sediment (SS) transport in two streams before, during, and just after weed cutting for the least and most pervasive weed cutting method, respectively. Our results indicated a lower habitat quality affiliated with increasing intensity of weed cutting practice, notably an association with silt cover at the expense of hard substrate. DO concentrations were relatively unaltered but an abrupt increase in SS transport comparable to storm events was observed during cutting with the most pervasive method. Our results indicate that ecological and hydromorphological effects of high intensity weed cutting should be carefully studied and considered before large scale implementation.
期刊介绍:
Knowledge and Management of Aquatic Ecosystems (KMAE-Bulletin Français de la Pêche et de la Pisciculture since 1928) serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to freshwater ecosystems.
The journal publishes articles, short communications, reviews, comments and replies that contribute to a scientific understanding of freshwater ecosystems and the impact of human activities upon these systems. Its scope includes economic, social, and public administration studies, in so far as they are directly concerned with the management of freshwater ecosystems (e.g. European Water Framework Directive, USA Clean Water Act, Canadian Water Quality Guidelines, …) and prove of general interest to freshwater specialists. Papers on insular freshwater ecosystems and on transitional waters are welcome. KMAE is not a preferred journal for taxonomical, physiological, biological, toxicological studies, unless a clear link to ecological aspects can be established. Articles with a very descriptive content can be accepted if they are part of a broader ecological context.