{"title":"电动滑板车的使用距离:斯德哥尔摩的应用程序使用和出行数据分析","authors":"Boel Berg Wincent, Erik Jenelius, Wilco Burghout","doi":"10.1016/j.jcmr.2023.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Users’ access distance to shared micromobility services is an important component of travel patterns, a determinant of travel choices, and input to determining service catchment areas. Users’ willingness to walk to shared micromobility vehicles is increasingly relevant as policymakers regulate shared free-floating e-scooters to designated parking zones. This paper proposes a novel approach to analyze access distances of e-scooters users based on e-scooter app use and trip data for Stockholm, Sweden. Euclidean access and map-based walking distances are derived from the distances between the location where the users opens the app to search for an e-scooter and the trip’s origin. Variations in access and walking distances are analyzed based on time of day, day of week, proximity to public transportation, and geographical distribution. Users walk on average 185 m and have an active walking time of 2.3 min with a median value of 95 m and 2.1 min. Shorter walking distances are observed for trips during the morning and lunch hours compared to the afternoon and at night. Furthermore, users walk slightly longer during the weekend compared to weekdays. Access distances are shortest within a 0–100 m radius to the nearest public transportation station. The suggested catchment area radius for shared e-scooters ranges from 128 m to 203 m, based on the 75th percentile of access distances. A policy implication is the importance of planning parking zones for e-scooters very close to public transportation to encourage multimodal trips.</p></div>","PeriodicalId":100771,"journal":{"name":"Journal of Cycling and Micromobility Research","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950105923000049/pdfft?md5=73950cba0e25ce7462496b036b44a7b0&pid=1-s2.0-S2950105923000049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Access distance to e-scooters: Analysis of app use and trip data in Stockholm\",\"authors\":\"Boel Berg Wincent, Erik Jenelius, Wilco Burghout\",\"doi\":\"10.1016/j.jcmr.2023.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Users’ access distance to shared micromobility services is an important component of travel patterns, a determinant of travel choices, and input to determining service catchment areas. Users’ willingness to walk to shared micromobility vehicles is increasingly relevant as policymakers regulate shared free-floating e-scooters to designated parking zones. This paper proposes a novel approach to analyze access distances of e-scooters users based on e-scooter app use and trip data for Stockholm, Sweden. Euclidean access and map-based walking distances are derived from the distances between the location where the users opens the app to search for an e-scooter and the trip’s origin. Variations in access and walking distances are analyzed based on time of day, day of week, proximity to public transportation, and geographical distribution. Users walk on average 185 m and have an active walking time of 2.3 min with a median value of 95 m and 2.1 min. Shorter walking distances are observed for trips during the morning and lunch hours compared to the afternoon and at night. Furthermore, users walk slightly longer during the weekend compared to weekdays. Access distances are shortest within a 0–100 m radius to the nearest public transportation station. The suggested catchment area radius for shared e-scooters ranges from 128 m to 203 m, based on the 75th percentile of access distances. A policy implication is the importance of planning parking zones for e-scooters very close to public transportation to encourage multimodal trips.</p></div>\",\"PeriodicalId\":100771,\"journal\":{\"name\":\"Journal of Cycling and Micromobility Research\",\"volume\":\"1 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950105923000049/pdfft?md5=73950cba0e25ce7462496b036b44a7b0&pid=1-s2.0-S2950105923000049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cycling and Micromobility Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950105923000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cycling and Micromobility Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950105923000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Access distance to e-scooters: Analysis of app use and trip data in Stockholm
Users’ access distance to shared micromobility services is an important component of travel patterns, a determinant of travel choices, and input to determining service catchment areas. Users’ willingness to walk to shared micromobility vehicles is increasingly relevant as policymakers regulate shared free-floating e-scooters to designated parking zones. This paper proposes a novel approach to analyze access distances of e-scooters users based on e-scooter app use and trip data for Stockholm, Sweden. Euclidean access and map-based walking distances are derived from the distances between the location where the users opens the app to search for an e-scooter and the trip’s origin. Variations in access and walking distances are analyzed based on time of day, day of week, proximity to public transportation, and geographical distribution. Users walk on average 185 m and have an active walking time of 2.3 min with a median value of 95 m and 2.1 min. Shorter walking distances are observed for trips during the morning and lunch hours compared to the afternoon and at night. Furthermore, users walk slightly longer during the weekend compared to weekdays. Access distances are shortest within a 0–100 m radius to the nearest public transportation station. The suggested catchment area radius for shared e-scooters ranges from 128 m to 203 m, based on the 75th percentile of access distances. A policy implication is the importance of planning parking zones for e-scooters very close to public transportation to encourage multimodal trips.