{"title":"随机图中的单色循环划分","authors":"R. Lang, A. Lo","doi":"10.1017/S0963548320000401","DOIUrl":null,"url":null,"abstract":"Abstract Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if \n$p = p(n) = \\Omega(n^{-1/(2r)})$\n , then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"50 1","pages":"136 - 152"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Monochromatic cycle partitions in random graphs\",\"authors\":\"R. Lang, A. Lo\",\"doi\":\"10.1017/S0963548320000401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if \\n$p = p(n) = \\\\Omega(n^{-1/(2r)})$\\n , then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"50 1\",\"pages\":\"136 - 152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if
$p = p(n) = \Omega(n^{-1/(2r)})$
, then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.