NARX模型广义频响函数的频率相关幅度界

X. Jing, Z. Lang, S. Billings
{"title":"NARX模型广义频响函数的频率相关幅度界","authors":"X. Jing, Z. Lang, S. Billings","doi":"10.3166/ejc.15.68-83","DOIUrl":null,"url":null,"abstract":"New magnitude bounds of the frequency response functions for the Nonlinear AutoRegressive model with eXogenous input (NARX) are investigated by exploiting the symmetry of the nth-order generalized frequency response function (GFRF) in its n frequency variables. The new magnitude bound of the nth-order symmetric GFRF is frequency-dependent, and is a polynomial function of the magnitude of the first order GFRF. The coefficients of this polynomial function are functions of model parameters. Based on this result, the system output spectrum can also be bounded by an analytical polynomial function of the magnitude of the first order GFRF. The conservatism in the bound evaluations is reduced compared with previous results. Several examples and necessary discussions illustrate the potential application and effectiveness of the new results.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":"15 1","pages":"68-83"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Frequency-Dependent Magnitude Bounds of the Generalized Frequency Response Functions for NARX Model\",\"authors\":\"X. Jing, Z. Lang, S. Billings\",\"doi\":\"10.3166/ejc.15.68-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New magnitude bounds of the frequency response functions for the Nonlinear AutoRegressive model with eXogenous input (NARX) are investigated by exploiting the symmetry of the nth-order generalized frequency response function (GFRF) in its n frequency variables. The new magnitude bound of the nth-order symmetric GFRF is frequency-dependent, and is a polynomial function of the magnitude of the first order GFRF. The coefficients of this polynomial function are functions of model parameters. Based on this result, the system output spectrum can also be bounded by an analytical polynomial function of the magnitude of the first order GFRF. The conservatism in the bound evaluations is reduced compared with previous results. Several examples and necessary discussions illustrate the potential application and effectiveness of the new results.\",\"PeriodicalId\":11813,\"journal\":{\"name\":\"Eur. J. Control\",\"volume\":\"15 1\",\"pages\":\"68-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/ejc.15.68-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/ejc.15.68-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

利用n阶广义频率响应函数(GFRF)在n个频率变量中的对称性,研究了外源输入非线性自回归模型(NARX)频率响应函数的新幅度边界。新的n阶对称GFRF幅度界是频率相关的,是一阶GFRF幅度的多项式函数。该多项式函数的系数是模型参数的函数。基于这一结果,系统输出频谱也可以用一阶GFRF幅度的解析多项式函数来限定。与以前的结果相比,边界评价的保守性降低了。几个实例和必要的讨论说明了新结果的潜在应用和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-Dependent Magnitude Bounds of the Generalized Frequency Response Functions for NARX Model
New magnitude bounds of the frequency response functions for the Nonlinear AutoRegressive model with eXogenous input (NARX) are investigated by exploiting the symmetry of the nth-order generalized frequency response function (GFRF) in its n frequency variables. The new magnitude bound of the nth-order symmetric GFRF is frequency-dependent, and is a polynomial function of the magnitude of the first order GFRF. The coefficients of this polynomial function are functions of model parameters. Based on this result, the system output spectrum can also be bounded by an analytical polynomial function of the magnitude of the first order GFRF. The conservatism in the bound evaluations is reduced compared with previous results. Several examples and necessary discussions illustrate the potential application and effectiveness of the new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信