新型气助喷嘴喷雾特性的实验研究与数值模拟

Q4 Engineering
Kun Liu, Yonggang Yu, N. Zhao
{"title":"新型气助喷嘴喷雾特性的实验研究与数值模拟","authors":"Kun Liu, Yonggang Yu, N. Zhao","doi":"10.11916/J.ISSN.1005-9113.2016.01.005","DOIUrl":null,"url":null,"abstract":"To investigate the spray characteristics of a new?type air?assist nozzle, three-dimensional laser phase Dopper analyzer (PDA) was used to measure the spray parameters. The external flow fields of the nozzle were simulated by means of computational fluid dynamics (CFD). The distributions of the diameter and the axial velocity for the droplets were analyzed respectively. The results indicate that, the mean diameter of the droplets fluctuates along the center axis. The distance between the measurement point and the nozzle increases, the axial velocity of the droplets decreases. The further the measurement point from the center axis is, the smaller the axial velocity of the droplets is. With the increase of the nozzle pressure drop, the axial velocity of the droplets improves while the mean diameter of the droplets is reduced, and the distribution uniformity of the droplets is better for the diameter. The simulation result agrees well with the experimental data. The average deviation ranges from 3.9% to 7.7%.","PeriodicalId":39923,"journal":{"name":"Journal of Harbin Institute of Technology (New Series)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study and Numerical Simulation on Spray Characteristics of New-Type Air-Assist Nozzle\",\"authors\":\"Kun Liu, Yonggang Yu, N. Zhao\",\"doi\":\"10.11916/J.ISSN.1005-9113.2016.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the spray characteristics of a new?type air?assist nozzle, three-dimensional laser phase Dopper analyzer (PDA) was used to measure the spray parameters. The external flow fields of the nozzle were simulated by means of computational fluid dynamics (CFD). The distributions of the diameter and the axial velocity for the droplets were analyzed respectively. The results indicate that, the mean diameter of the droplets fluctuates along the center axis. The distance between the measurement point and the nozzle increases, the axial velocity of the droplets decreases. The further the measurement point from the center axis is, the smaller the axial velocity of the droplets is. With the increase of the nozzle pressure drop, the axial velocity of the droplets improves while the mean diameter of the droplets is reduced, and the distribution uniformity of the droplets is better for the diameter. The simulation result agrees well with the experimental data. The average deviation ranges from 3.9% to 7.7%.\",\"PeriodicalId\":39923,\"journal\":{\"name\":\"Journal of Harbin Institute of Technology (New Series)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Harbin Institute of Technology (New Series)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11916/J.ISSN.1005-9113.2016.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Harbin Institute of Technology (New Series)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11916/J.ISSN.1005-9113.2016.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

研究一种新型?式空气吗?利用三维激光相位多普勒分析仪(PDA)辅助喷嘴对喷雾参数进行测量。采用计算流体力学(CFD)方法对喷嘴外流场进行了数值模拟。分析了液滴直径和轴向速度的分布。结果表明,液滴的平均直径沿中心轴波动;测点与喷嘴之间的距离增大,液滴的轴向速度减小。测点离中心轴越远,液滴的轴向速度越小。随着喷嘴压降的增大,液滴的轴向速度增大,液滴的平均直径减小,液滴的分布均匀性随直径的增大而增大。仿真结果与实验数据吻合较好。平均偏差范围为3.9% ~ 7.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study and Numerical Simulation on Spray Characteristics of New-Type Air-Assist Nozzle
To investigate the spray characteristics of a new?type air?assist nozzle, three-dimensional laser phase Dopper analyzer (PDA) was used to measure the spray parameters. The external flow fields of the nozzle were simulated by means of computational fluid dynamics (CFD). The distributions of the diameter and the axial velocity for the droplets were analyzed respectively. The results indicate that, the mean diameter of the droplets fluctuates along the center axis. The distance between the measurement point and the nozzle increases, the axial velocity of the droplets decreases. The further the measurement point from the center axis is, the smaller the axial velocity of the droplets is. With the increase of the nozzle pressure drop, the axial velocity of the droplets improves while the mean diameter of the droplets is reduced, and the distribution uniformity of the droplets is better for the diameter. The simulation result agrees well with the experimental data. The average deviation ranges from 3.9% to 7.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
2515
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信