Djaloul Karboua, B. Toual, A. Kouzou, Ben Ouadeh Douara, Toufik Mebkhouta, A. Bendenidina
{"title":"基于高阶超捻的终端滑模控制在三相永磁同步电机中的应用","authors":"Djaloul Karboua, B. Toual, A. Kouzou, Ben Ouadeh Douara, Toufik Mebkhouta, A. Bendenidina","doi":"10.3311/ppee.21026","DOIUrl":null,"url":null,"abstract":"Nowadays, research on electric drive control has become popular because hybrid methods to collect the advantages of individual controllers. Moreover, these methods aim to reach better performance and robust control even in the presence of uncertainties and disturbances which are typically evident in high-speed dynamics where the influence of external disturbances and modeling errors are more evident. Therefore, in this paper, a novel hybrid controller is proposed between the super-twisting algorithm based on high order design (HO-STA) and terminal sliding mode control (T-SMC) applied on a permanent magnet synchronous motor PMSM. Whereas, it accounts to deal with the weaknesses of both terminal sliding mode control and super twisting algorithm (STA) and at the same time combining their advantages; furthermore, it provides exceptional characteristics, including fast finite-time convergence, stabilization of the performance and its reaching law developer based on new design which contributes to reducing the chattering problems afflicted by C-SMC. This proposed hybrid technique contributes to gaining robust control under variation between slow, medium, and high speed levels, no matter what load torque is applied or whatever PMSM parameters change. Moreover, it also offers optimum performance characteristics such as smaller settling time and steady state error. Whereas, the control efficiency is demonstrated by Matlab/Simulink simulation to confirm our design parameters.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"1 1","pages":"40-50"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-order Supper-twisting Based Terminal Sliding Mode Control Applied on Three Phases Permanent Synchronous Machine\",\"authors\":\"Djaloul Karboua, B. Toual, A. Kouzou, Ben Ouadeh Douara, Toufik Mebkhouta, A. Bendenidina\",\"doi\":\"10.3311/ppee.21026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, research on electric drive control has become popular because hybrid methods to collect the advantages of individual controllers. Moreover, these methods aim to reach better performance and robust control even in the presence of uncertainties and disturbances which are typically evident in high-speed dynamics where the influence of external disturbances and modeling errors are more evident. Therefore, in this paper, a novel hybrid controller is proposed between the super-twisting algorithm based on high order design (HO-STA) and terminal sliding mode control (T-SMC) applied on a permanent magnet synchronous motor PMSM. Whereas, it accounts to deal with the weaknesses of both terminal sliding mode control and super twisting algorithm (STA) and at the same time combining their advantages; furthermore, it provides exceptional characteristics, including fast finite-time convergence, stabilization of the performance and its reaching law developer based on new design which contributes to reducing the chattering problems afflicted by C-SMC. This proposed hybrid technique contributes to gaining robust control under variation between slow, medium, and high speed levels, no matter what load torque is applied or whatever PMSM parameters change. Moreover, it also offers optimum performance characteristics such as smaller settling time and steady state error. Whereas, the control efficiency is demonstrated by Matlab/Simulink simulation to confirm our design parameters.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\"1 1\",\"pages\":\"40-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.21026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
High-order Supper-twisting Based Terminal Sliding Mode Control Applied on Three Phases Permanent Synchronous Machine
Nowadays, research on electric drive control has become popular because hybrid methods to collect the advantages of individual controllers. Moreover, these methods aim to reach better performance and robust control even in the presence of uncertainties and disturbances which are typically evident in high-speed dynamics where the influence of external disturbances and modeling errors are more evident. Therefore, in this paper, a novel hybrid controller is proposed between the super-twisting algorithm based on high order design (HO-STA) and terminal sliding mode control (T-SMC) applied on a permanent magnet synchronous motor PMSM. Whereas, it accounts to deal with the weaknesses of both terminal sliding mode control and super twisting algorithm (STA) and at the same time combining their advantages; furthermore, it provides exceptional characteristics, including fast finite-time convergence, stabilization of the performance and its reaching law developer based on new design which contributes to reducing the chattering problems afflicted by C-SMC. This proposed hybrid technique contributes to gaining robust control under variation between slow, medium, and high speed levels, no matter what load torque is applied or whatever PMSM parameters change. Moreover, it also offers optimum performance characteristics such as smaller settling time and steady state error. Whereas, the control efficiency is demonstrated by Matlab/Simulink simulation to confirm our design parameters.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).