Naphat Keawpiba, L. Preechaveerakul, S. Vanichayobon
{"title":"HyBiX:一种新颖的编码位图索引,用于节省空间和时间的查询处理","authors":"Naphat Keawpiba, L. Preechaveerakul, S. Vanichayobon","doi":"10.3906/ELK-1807-277","DOIUrl":null,"url":null,"abstract":"A bitmap-based index is an effective and efficient indexing method for answering selective queries in a read- only environment. It offers improved query execution time by applying low-cost Boolean operators on the index directly, before accessing raw data. A drawback of the bitmap index is that index size increases with the cardinality of indexed attributes, which additionally has an impact on a query execution time. This impact is related to an increase of query execution time due to the scanning of bitmap vectors to answer the queries. In this paper, we propose a new encoding bitmap index, called the HyBiX bitmap index. The HyBiX bitmap index was experimentally compared to existing encoding bitmap indexes in terms of space requirement, query execution time, and space and time trade-off for equality and range queries. As experimental results, the HyBiX bitmap index can reduce space requirements with high cardinality attributes with satisfactory execution times for both equality and range queries. The performance of the HyBiX bitmap index provides the second-best results for equality queries and the first-best for range queries in terms of space and time trade-off.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"44 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HyBiX: A novel encoding bitmap index for space- and time-efficient query processing\",\"authors\":\"Naphat Keawpiba, L. Preechaveerakul, S. Vanichayobon\",\"doi\":\"10.3906/ELK-1807-277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bitmap-based index is an effective and efficient indexing method for answering selective queries in a read- only environment. It offers improved query execution time by applying low-cost Boolean operators on the index directly, before accessing raw data. A drawback of the bitmap index is that index size increases with the cardinality of indexed attributes, which additionally has an impact on a query execution time. This impact is related to an increase of query execution time due to the scanning of bitmap vectors to answer the queries. In this paper, we propose a new encoding bitmap index, called the HyBiX bitmap index. The HyBiX bitmap index was experimentally compared to existing encoding bitmap indexes in terms of space requirement, query execution time, and space and time trade-off for equality and range queries. As experimental results, the HyBiX bitmap index can reduce space requirements with high cardinality attributes with satisfactory execution times for both equality and range queries. The performance of the HyBiX bitmap index provides the second-best results for equality queries and the first-best for range queries in terms of space and time trade-off.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1807-277\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1807-277","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
HyBiX: A novel encoding bitmap index for space- and time-efficient query processing
A bitmap-based index is an effective and efficient indexing method for answering selective queries in a read- only environment. It offers improved query execution time by applying low-cost Boolean operators on the index directly, before accessing raw data. A drawback of the bitmap index is that index size increases with the cardinality of indexed attributes, which additionally has an impact on a query execution time. This impact is related to an increase of query execution time due to the scanning of bitmap vectors to answer the queries. In this paper, we propose a new encoding bitmap index, called the HyBiX bitmap index. The HyBiX bitmap index was experimentally compared to existing encoding bitmap indexes in terms of space requirement, query execution time, and space and time trade-off for equality and range queries. As experimental results, the HyBiX bitmap index can reduce space requirements with high cardinality attributes with satisfactory execution times for both equality and range queries. The performance of the HyBiX bitmap index provides the second-best results for equality queries and the first-best for range queries in terms of space and time trade-off.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.