莱维特路径代数正则环上的算子

T. Ozdin
{"title":"莱维特路径代数正则环上的算子","authors":"T. Ozdin","doi":"10.31926/but.mif.2023.3.65.1.13","DOIUrl":null,"url":null,"abstract":"In [8, Theorem 1], Jain and Prasad obtained a kind of symmetry of regular rings which is interesting and useful in the theory of shorted operators (cf. [9]). We show that this symmetry property indeed holds for endomorphism rings of Leavitt path algebras. Using this property, we analyze a (strong/weak) regular inverse of an element of the regular endomorphism ring A of the Leavitt path algebra L:= LK(E) (viewed as a right L-module). We also introduce some partial orders on the endomorphism ring A of the Leavitt path algebra L and investigate the behavior of regular elements in A.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operators on regular rings of Leavitt path algebras\",\"authors\":\"T. Ozdin\",\"doi\":\"10.31926/but.mif.2023.3.65.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [8, Theorem 1], Jain and Prasad obtained a kind of symmetry of regular rings which is interesting and useful in the theory of shorted operators (cf. [9]). We show that this symmetry property indeed holds for endomorphism rings of Leavitt path algebras. Using this property, we analyze a (strong/weak) regular inverse of an element of the regular endomorphism ring A of the Leavitt path algebra L:= LK(E) (viewed as a right L-module). We also introduce some partial orders on the endomorphism ring A of the Leavitt path algebra L and investigate the behavior of regular elements in A.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2023.3.65.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2023.3.65.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在[8,定理1]中,Jain和Prasad得到了一种正则环的对称性,这种对称性在短算子理论中很有趣,也很有用(参见[9])。我们证明了这种对称性对于Leavitt路径代数的自同态环确实成立。利用这一性质,我们分析了Leavitt路径代数L:= LK(E)的正则自同态环a的一个元素的(强/弱)正则逆(视为右L模)。我们还在Leavitt路径代数L的自同态环A上引入了一些偏序,并研究了A上正则元的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operators on regular rings of Leavitt path algebras
In [8, Theorem 1], Jain and Prasad obtained a kind of symmetry of regular rings which is interesting and useful in the theory of shorted operators (cf. [9]). We show that this symmetry property indeed holds for endomorphism rings of Leavitt path algebras. Using this property, we analyze a (strong/weak) regular inverse of an element of the regular endomorphism ring A of the Leavitt path algebra L:= LK(E) (viewed as a right L-module). We also introduce some partial orders on the endomorphism ring A of the Leavitt path algebra L and investigate the behavior of regular elements in A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信