盐蠕变对井眼塌陷的影响及完井设计——基于南阿曼油田经验

A. Moiseenkov, Dmitrii Smirnov, S. Mahajan, A. Hadhrami, I. Azizi, Hilal Shabibi, Y. Balushi, Mahmood Omairi, M. Rashdi
{"title":"盐蠕变对井眼塌陷的影响及完井设计——基于南阿曼油田经验","authors":"A. Moiseenkov, Dmitrii Smirnov, S. Mahajan, A. Hadhrami, I. Azizi, Hilal Shabibi, Y. Balushi, Mahmood Omairi, M. Rashdi","doi":"10.2118/197692-ms","DOIUrl":null,"url":null,"abstract":"\n There have been many oil and gas field discoveries in the Cambrian Ara Group intra-salt carbonate rocks in the South Oman Salt Basin. These carbonates represent self-charging petroleum system with over-pressured hydrocarbon accumulation in dolomitized rock encased in the salt. Drilling and completion wells going through salt is challenging. Salt creeping behavior results in issues of stuck pipe during drilling operations, casings deformation and collapse that have led to well suspension and abandonment.\n The full set of the available historical data analyzed to identify magnitude and history of the problem. The study conducted to estimate of salt creep magnitude, to assess the effect of the salt creep on cement quality, drilling and completion risks. The risk of salt creep on the drilling, completion and long-term well integrity was evaluated with multi-disciplinary integration of geological, geomechanical, petrophysical and well engineering aspects to minimize and mitigate the salt creeping risks. In addition to identify root cause for completion failure and providing recommendations to drilling practices, cementation and completion design that can improve well delivery process.\n Salt creep behavior presents drilling challenges associated with excessive torque, stuck pipe, casing deformation, and poor cementing job. Salt creep associated risks to drilling and well integrity should be managed and mitigated. Key study findings captured for wells designs were: Salt creep rate increases with depth, salt thickness and differential stress (function of MW)Non uniform loading decreases the collapse rating of the casing and results in casing deformationNon-uniform loading likely due to poor cementing, interface between rigid carbonate intervals and salt, and irregular open hole quality.\n Studied casing collapse cases could likely be attributed to several factors or combinations of factors such as salt mobility behavior, drilling with low MW, poor cement jobs and loss of internal hydrostatic support for the casing after cement job between liners lap. The improved multi-disciplinary understanding of salt creep is vital to reduce drilling and completion costs, unnecessary well abandonment and achieve good life cycle well integrity i.e. avoid extra side-track and workover cost due to integrity issues. The best practices and conclusions summarized in the study for drilling and completion design expected to benefit the exploration and development projects for the salt encased carbonate reservoirs around the globe.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salt Creeping Effect on Borehole Collapse and Well Completion Design, Based on South Oman Field Experience\",\"authors\":\"A. Moiseenkov, Dmitrii Smirnov, S. Mahajan, A. Hadhrami, I. Azizi, Hilal Shabibi, Y. Balushi, Mahmood Omairi, M. Rashdi\",\"doi\":\"10.2118/197692-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There have been many oil and gas field discoveries in the Cambrian Ara Group intra-salt carbonate rocks in the South Oman Salt Basin. These carbonates represent self-charging petroleum system with over-pressured hydrocarbon accumulation in dolomitized rock encased in the salt. Drilling and completion wells going through salt is challenging. Salt creeping behavior results in issues of stuck pipe during drilling operations, casings deformation and collapse that have led to well suspension and abandonment.\\n The full set of the available historical data analyzed to identify magnitude and history of the problem. The study conducted to estimate of salt creep magnitude, to assess the effect of the salt creep on cement quality, drilling and completion risks. The risk of salt creep on the drilling, completion and long-term well integrity was evaluated with multi-disciplinary integration of geological, geomechanical, petrophysical and well engineering aspects to minimize and mitigate the salt creeping risks. In addition to identify root cause for completion failure and providing recommendations to drilling practices, cementation and completion design that can improve well delivery process.\\n Salt creep behavior presents drilling challenges associated with excessive torque, stuck pipe, casing deformation, and poor cementing job. Salt creep associated risks to drilling and well integrity should be managed and mitigated. Key study findings captured for wells designs were: Salt creep rate increases with depth, salt thickness and differential stress (function of MW)Non uniform loading decreases the collapse rating of the casing and results in casing deformationNon-uniform loading likely due to poor cementing, interface between rigid carbonate intervals and salt, and irregular open hole quality.\\n Studied casing collapse cases could likely be attributed to several factors or combinations of factors such as salt mobility behavior, drilling with low MW, poor cement jobs and loss of internal hydrostatic support for the casing after cement job between liners lap. The improved multi-disciplinary understanding of salt creep is vital to reduce drilling and completion costs, unnecessary well abandonment and achieve good life cycle well integrity i.e. avoid extra side-track and workover cost due to integrity issues. The best practices and conclusions summarized in the study for drilling and completion design expected to benefit the exploration and development projects for the salt encased carbonate reservoirs around the globe.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197692-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197692-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

南阿曼盐盆地寒武系阿拉群盐内碳酸盐岩中发现了许多油气田。这些碳酸盐岩代表了自充注油气系统,在盐包裹的白云化岩石中有超压油气聚集。穿过盐层的钻井和完井具有挑战性。盐蠕变会导致钻井过程中出现卡钻、套管变形和坍塌等问题,从而导致油井暂停和弃井。分析可用历史数据的完整集合,以确定问题的规模和历史。研究估算了盐蠕变幅度,评估了盐蠕变对水泥质量、钻完井风险的影响。通过地质、地质力学、岩石物理和井工程等多学科综合评估盐蠕变对钻井、完井和长期井完整性的风险,以最大限度地降低和减轻盐蠕变风险。此外,还可以确定完井失败的根本原因,并为钻井实践、固井和完井设计提供建议,从而改善井的交付过程。盐蠕变行为带来了钻井挑战,包括扭矩过大、卡钻、套管变形和固井效果差。盐蠕变对钻井和井完整性的风险应该得到控制和缓解。井设计的主要研究结果是:盐蠕变速率随着井深、盐层厚度和差应力(MW函数)的增加而增加。不均匀载荷会降低套管的坍塌等级,导致套管变形。不均匀载荷可能是由于固井质量差、硬质碳酸盐层与盐之间的界面以及不规则的裸眼质量造成的。所研究的套管坍塌案例可能归因于多种因素或多种因素的组合,如盐迁移行为、低MW钻井、水泥作业质量差以及衬管接箍之间固井后套管内部静水支撑的丧失。提高对盐蠕变的多学科理解对于降低钻井和完井成本、不必要的弃井以及实现良好的生命周期井完整性至关重要,即避免由于完整性问题而增加的侧道和修井成本。研究中总结的最佳实践和结论,有望为全球盐包式碳酸盐岩储层的勘探开发项目提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salt Creeping Effect on Borehole Collapse and Well Completion Design, Based on South Oman Field Experience
There have been many oil and gas field discoveries in the Cambrian Ara Group intra-salt carbonate rocks in the South Oman Salt Basin. These carbonates represent self-charging petroleum system with over-pressured hydrocarbon accumulation in dolomitized rock encased in the salt. Drilling and completion wells going through salt is challenging. Salt creeping behavior results in issues of stuck pipe during drilling operations, casings deformation and collapse that have led to well suspension and abandonment. The full set of the available historical data analyzed to identify magnitude and history of the problem. The study conducted to estimate of salt creep magnitude, to assess the effect of the salt creep on cement quality, drilling and completion risks. The risk of salt creep on the drilling, completion and long-term well integrity was evaluated with multi-disciplinary integration of geological, geomechanical, petrophysical and well engineering aspects to minimize and mitigate the salt creeping risks. In addition to identify root cause for completion failure and providing recommendations to drilling practices, cementation and completion design that can improve well delivery process. Salt creep behavior presents drilling challenges associated with excessive torque, stuck pipe, casing deformation, and poor cementing job. Salt creep associated risks to drilling and well integrity should be managed and mitigated. Key study findings captured for wells designs were: Salt creep rate increases with depth, salt thickness and differential stress (function of MW)Non uniform loading decreases the collapse rating of the casing and results in casing deformationNon-uniform loading likely due to poor cementing, interface between rigid carbonate intervals and salt, and irregular open hole quality. Studied casing collapse cases could likely be attributed to several factors or combinations of factors such as salt mobility behavior, drilling with low MW, poor cement jobs and loss of internal hydrostatic support for the casing after cement job between liners lap. The improved multi-disciplinary understanding of salt creep is vital to reduce drilling and completion costs, unnecessary well abandonment and achieve good life cycle well integrity i.e. avoid extra side-track and workover cost due to integrity issues. The best practices and conclusions summarized in the study for drilling and completion design expected to benefit the exploration and development projects for the salt encased carbonate reservoirs around the globe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信