关于和湮灭子理想的拓延

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Paykani̇an, E. Hashemi, A. Alhevaz
{"title":"关于和湮灭子理想的拓延","authors":"M. Paykani̇an, E. Hashemi, A. Alhevaz","doi":"10.15672/hujms.1037521","DOIUrl":null,"url":null,"abstract":"A ring $R$ is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of\n the intersection of any two left ideals is the sum of the two right annihilators.\n As a generalization of left IN-rings, a ring $R$ is called a right SA-ring if the sum of\n right annihilators of two ideals is a right annihilator of an ideal of $R$.\n It is natural to ask if IN and SA property can be extended from $R$ to\n $R[x; \\alpha, \\delta]$.\n In this note, the results concerning the conditions will allow these properties\nto transfer from $R$ to skew polynomials $R[x;\\alpha,\\delta]$ are obtained.\n In addition, for an $(\\alpha,\\delta)$-compatible ring $R$, it is shown that:\n (i) If $S = R[x;\\alpha,\\delta]$ is a left IN-ring with ${\\rm{Idm}}(R) ={\\rm{Idm}}(R[x;\\alpha, \\delta])$, then $R$ is left McCoy.\n (ii) Every reduced left IN-ring with finitely many minimal\nprime ideals is a semiprime left Goldie ring.\n (iii) Every commutative principal ideal ring (PIR) $R$, is an IN-ring and so is $R[x]$.\n (iv) If $R$ be a reduced ring and $n$ a positive integer, then $R$ is right\nSA if and only if $R[x]/(x^{n+1})$ is right SA.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON SUM ANNIHILATOR IDEALS IN ORE EXTENSIONS\",\"authors\":\"M. Paykani̇an, E. Hashemi, A. Alhevaz\",\"doi\":\"10.15672/hujms.1037521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ring $R$ is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of\\n the intersection of any two left ideals is the sum of the two right annihilators.\\n As a generalization of left IN-rings, a ring $R$ is called a right SA-ring if the sum of\\n right annihilators of two ideals is a right annihilator of an ideal of $R$.\\n It is natural to ask if IN and SA property can be extended from $R$ to\\n $R[x; \\\\alpha, \\\\delta]$.\\n In this note, the results concerning the conditions will allow these properties\\nto transfer from $R$ to skew polynomials $R[x;\\\\alpha,\\\\delta]$ are obtained.\\n In addition, for an $(\\\\alpha,\\\\delta)$-compatible ring $R$, it is shown that:\\n (i) If $S = R[x;\\\\alpha,\\\\delta]$ is a left IN-ring with ${\\\\rm{Idm}}(R) ={\\\\rm{Idm}}(R[x;\\\\alpha, \\\\delta])$, then $R$ is left McCoy.\\n (ii) Every reduced left IN-ring with finitely many minimal\\nprime ideals is a semiprime left Goldie ring.\\n (iii) Every commutative principal ideal ring (PIR) $R$, is an IN-ring and so is $R[x]$.\\n (iv) If $R$ be a reduced ring and $n$ a positive integer, then $R$ is right\\nSA if and only if $R[x]/(x^{n+1})$ is right SA.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1037521\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1037521","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果任意两个左理想交点的右湮灭子是两个右湮灭子的和,则称为左池田-中山环$R$(左in环)。作为左in环的推广,如果两个理想的右湮灭子的和是一个理想$R$的右湮灭子,则环$R$称为右sa环。人们自然会问是否可以将IN和SA属性从$R$扩展到$R[x; \alpha, \delta]$。在本文中,得到了允许这些性质从$R$转移到倾斜多项式$R[x;\alpha,\delta]$的条件的结果。另外,对于$(\alpha,\delta)$ -兼容环$R$,可以证明:(i)如果$S = R[x;\alpha,\delta]$与${\rm{Idm}}(R) ={\rm{Idm}}(R[x;\alpha, \delta])$是左In环,则$R$是左McCoy。(ii)每一个具有有限多个最小素数理想的约简左in环是一个半素数左Goldie环。(iii)每个交换主理想环(PIR) $R$都是in环,$R[x]$也是in环。(iv)如果$R$是一个约简环,$n$是一个正整数,那么当且仅当$R[x]/(x^{n+1})$是正确的SA, $R$是正确的SA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON SUM ANNIHILATOR IDEALS IN ORE EXTENSIONS
A ring $R$ is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the intersection of any two left ideals is the sum of the two right annihilators. As a generalization of left IN-rings, a ring $R$ is called a right SA-ring if the sum of right annihilators of two ideals is a right annihilator of an ideal of $R$. It is natural to ask if IN and SA property can be extended from $R$ to $R[x; \alpha, \delta]$. In this note, the results concerning the conditions will allow these properties to transfer from $R$ to skew polynomials $R[x;\alpha,\delta]$ are obtained. In addition, for an $(\alpha,\delta)$-compatible ring $R$, it is shown that: (i) If $S = R[x;\alpha,\delta]$ is a left IN-ring with ${\rm{Idm}}(R) ={\rm{Idm}}(R[x;\alpha, \delta])$, then $R$ is left McCoy. (ii) Every reduced left IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) Every commutative principal ideal ring (PIR) $R$, is an IN-ring and so is $R[x]$. (iv) If $R$ be a reduced ring and $n$ a positive integer, then $R$ is right SA if and only if $R[x]/(x^{n+1})$ is right SA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信