{"title":"具有平面单应性估计的运动结构:用于空中侦察的实时低带宽、高分辨率变体","authors":"C. Arnold, S. Nykl, Scott Graham, R. Leishman","doi":"10.1177/15485129211062880","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm variant for Structure from Motion (SfM) to enable real-time image processing of scenes imaged by aerial drones. Our new SfM variant runs in real-time at 4 Hz equating to an 80× computation time speed-up compared to traditional SfM and is capable of a 90% size reduction of original video imagery, with an added benefit of presenting the original two-dimensional (2D) video data as a three-dimensional (3D) virtual model. This opens many potential applications for a real-time image processing that could make autonomous vision–based navigation possible by completely replacing the need for a traditional live video feed. The 3D reconstruction that is generated comes with the added benefit of being able to generate a spatially accurate representation of a live environment that is precise enough to generate global positioning system (GPS) coordinates from any given point on an imaged structure, even in a GPS-denied environment.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":"124 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure from motion with planar homography estimation: a real-time low-bandwidth, high-resolution variant for aerial reconnaissance\",\"authors\":\"C. Arnold, S. Nykl, Scott Graham, R. Leishman\",\"doi\":\"10.1177/15485129211062880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new algorithm variant for Structure from Motion (SfM) to enable real-time image processing of scenes imaged by aerial drones. Our new SfM variant runs in real-time at 4 Hz equating to an 80× computation time speed-up compared to traditional SfM and is capable of a 90% size reduction of original video imagery, with an added benefit of presenting the original two-dimensional (2D) video data as a three-dimensional (3D) virtual model. This opens many potential applications for a real-time image processing that could make autonomous vision–based navigation possible by completely replacing the need for a traditional live video feed. The 3D reconstruction that is generated comes with the added benefit of being able to generate a spatially accurate representation of a live environment that is precise enough to generate global positioning system (GPS) coordinates from any given point on an imaged structure, even in a GPS-denied environment.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211062880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211062880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure from motion with planar homography estimation: a real-time low-bandwidth, high-resolution variant for aerial reconnaissance
We propose a new algorithm variant for Structure from Motion (SfM) to enable real-time image processing of scenes imaged by aerial drones. Our new SfM variant runs in real-time at 4 Hz equating to an 80× computation time speed-up compared to traditional SfM and is capable of a 90% size reduction of original video imagery, with an added benefit of presenting the original two-dimensional (2D) video data as a three-dimensional (3D) virtual model. This opens many potential applications for a real-time image processing that could make autonomous vision–based navigation possible by completely replacing the need for a traditional live video feed. The 3D reconstruction that is generated comes with the added benefit of being able to generate a spatially accurate representation of a live environment that is precise enough to generate global positioning system (GPS) coordinates from any given point on an imaged structure, even in a GPS-denied environment.