利用Rishi变换求解第二类线性Volterra积分方程

S. Aggarwal, R. Kumar, J. Chandel
{"title":"利用Rishi变换求解第二类线性Volterra积分方程","authors":"S. Aggarwal, R. Kumar, J. Chandel","doi":"10.3329/jsr.v15i1.60337","DOIUrl":null,"url":null,"abstract":"The solution of various problems of engineering and science can easily determined by representing these problems in integral equations. There are numerous analytical and numerical methods which can be used for solving different kinds of integral equations. In this paper, authors used recently developed integral transform “Rishi Transform” for obtaining the analytical solution of linear Volterra integral equation of second kind (LVIESK). For this, the kernel of LVIESK has assumed a convolution type kernel. Five numerical examples are considered for demonstrating the complete procedure of determining the solution. Results of these problems suggest that Rishi transform provides the exact analytical solution of LVIESK without doing complicated calculation work.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Linear Volterra Integral Equation of Second Kind via Rishi Transform\",\"authors\":\"S. Aggarwal, R. Kumar, J. Chandel\",\"doi\":\"10.3329/jsr.v15i1.60337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of various problems of engineering and science can easily determined by representing these problems in integral equations. There are numerous analytical and numerical methods which can be used for solving different kinds of integral equations. In this paper, authors used recently developed integral transform “Rishi Transform” for obtaining the analytical solution of linear Volterra integral equation of second kind (LVIESK). For this, the kernel of LVIESK has assumed a convolution type kernel. Five numerical examples are considered for demonstrating the complete procedure of determining the solution. Results of these problems suggest that Rishi transform provides the exact analytical solution of LVIESK without doing complicated calculation work.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v15i1.60337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v15i1.60337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用积分方程表示各种工程和科学问题,可以很容易地确定这些问题的解。有许多解析和数值方法可用于求解不同类型的积分方程。本文利用近年来发展起来的积分变换“Rishi变换”,得到了第二类线性Volterra积分方程(LVIESK)的解析解。为此,LVIESK的内核假定为卷积型内核。为了演示确定解的完整过程,考虑了五个数值算例。这些问题的结果表明,Rishi变换无需复杂的计算工作,就能提供LVIESK的精确解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Linear Volterra Integral Equation of Second Kind via Rishi Transform
The solution of various problems of engineering and science can easily determined by representing these problems in integral equations. There are numerous analytical and numerical methods which can be used for solving different kinds of integral equations. In this paper, authors used recently developed integral transform “Rishi Transform” for obtaining the analytical solution of linear Volterra integral equation of second kind (LVIESK). For this, the kernel of LVIESK has assumed a convolution type kernel. Five numerical examples are considered for demonstrating the complete procedure of determining the solution. Results of these problems suggest that Rishi transform provides the exact analytical solution of LVIESK without doing complicated calculation work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信