转鼓式固体发酵生物反应器瞬态径向温度分布的数值模拟

E. Wang, Bing-Zheng Han, Shizhong Li
{"title":"转鼓式固体发酵生物反应器瞬态径向温度分布的数值模拟","authors":"E. Wang, Bing-Zheng Han, Shizhong Li","doi":"10.1109/ICMREE.2013.6893668","DOIUrl":null,"url":null,"abstract":"Solid-state fermentation (SSF) has received more and more attention and been applied to produce many kinds of chemicals in recent years, especially in the field of biofuel. The major problems to overcome in large-scale application of SSF are heat accumulation and heterogeneous distribution in this complex gas-liquid-solid multiphase bioreactor (or fermentor) system. In this work, a mathematical model of a rotating drum bioreactor for solid state anaerobic fermentation was developed which consider the transient radial temperature distribution in the substrate bed. Corresponding partial differential equations were solved using the finite volume method (FVM). Validation experiments were conducted in a 50L rotating drum fermentor. Simulation results could agree well with the experimental data. From these results, it was concluded that the mathematical model developed is a powerful tool to investigate design and scale-up of anaerobic SSF fermentors.","PeriodicalId":6427,"journal":{"name":"2013 International Conference on Materials for Renewable Energy and Environment","volume":"42 1","pages":"291-294"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical simulation of transient radial temperature distribution in rotating drum bioreactor for solid state fermentation\",\"authors\":\"E. Wang, Bing-Zheng Han, Shizhong Li\",\"doi\":\"10.1109/ICMREE.2013.6893668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state fermentation (SSF) has received more and more attention and been applied to produce many kinds of chemicals in recent years, especially in the field of biofuel. The major problems to overcome in large-scale application of SSF are heat accumulation and heterogeneous distribution in this complex gas-liquid-solid multiphase bioreactor (or fermentor) system. In this work, a mathematical model of a rotating drum bioreactor for solid state anaerobic fermentation was developed which consider the transient radial temperature distribution in the substrate bed. Corresponding partial differential equations were solved using the finite volume method (FVM). Validation experiments were conducted in a 50L rotating drum fermentor. Simulation results could agree well with the experimental data. From these results, it was concluded that the mathematical model developed is a powerful tool to investigate design and scale-up of anaerobic SSF fermentors.\",\"PeriodicalId\":6427,\"journal\":{\"name\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"volume\":\"42 1\",\"pages\":\"291-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMREE.2013.6893668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Materials for Renewable Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMREE.2013.6893668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,固态发酵技术越来越受到人们的重视,并被应用于多种化学品的生产,特别是在生物燃料领域。在这种复杂的气-液-固多相生物反应器(或发酵罐)系统中,SSF大规模应用需要克服的主要问题是热积累和不均匀分布。本文建立了考虑底床径向温度瞬态分布的转鼓式固体厌氧发酵生物反应器数学模型。用有限体积法求解了相应的偏微分方程。验证实验在50L转鼓发酵罐中进行。仿真结果与实验数据吻合较好。由此得出结论,所建立的数学模型是研究厌氧SSF发酵罐设计和放大的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of transient radial temperature distribution in rotating drum bioreactor for solid state fermentation
Solid-state fermentation (SSF) has received more and more attention and been applied to produce many kinds of chemicals in recent years, especially in the field of biofuel. The major problems to overcome in large-scale application of SSF are heat accumulation and heterogeneous distribution in this complex gas-liquid-solid multiphase bioreactor (or fermentor) system. In this work, a mathematical model of a rotating drum bioreactor for solid state anaerobic fermentation was developed which consider the transient radial temperature distribution in the substrate bed. Corresponding partial differential equations were solved using the finite volume method (FVM). Validation experiments were conducted in a 50L rotating drum fermentor. Simulation results could agree well with the experimental data. From these results, it was concluded that the mathematical model developed is a powerful tool to investigate design and scale-up of anaerobic SSF fermentors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信