{"title":"高渗透光伏对同步发电机稳定性的影响","authors":"M. Yagami, J. Tamura","doi":"10.1109/ICELMACH.2012.6350171","DOIUrl":null,"url":null,"abstract":"This paper presents the results of transient stability analysis of the synchronous generator in the power system with high levels of photovoltaic (PV) penetration. With the increasing PV penetration levels, the capacity of the synchronous generator needs to be reduced relatively in order to maintain power supply-demand balance. This leads to the lower system inertia and the higher generator reactance, and hence the transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this paper, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.","PeriodicalId":6309,"journal":{"name":"2012 XXth International Conference on Electrical Machines","volume":"2013 1","pages":"2092-2097"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Impact of high-penetration photovoltaic on synchronous generator stability\",\"authors\":\"M. Yagami, J. Tamura\",\"doi\":\"10.1109/ICELMACH.2012.6350171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of transient stability analysis of the synchronous generator in the power system with high levels of photovoltaic (PV) penetration. With the increasing PV penetration levels, the capacity of the synchronous generator needs to be reduced relatively in order to maintain power supply-demand balance. This leads to the lower system inertia and the higher generator reactance, and hence the transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this paper, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.\",\"PeriodicalId\":6309,\"journal\":{\"name\":\"2012 XXth International Conference on Electrical Machines\",\"volume\":\"2013 1\",\"pages\":\"2092-2097\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XXth International Conference on Electrical Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2012.6350171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XXth International Conference on Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2012.6350171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of high-penetration photovoltaic on synchronous generator stability
This paper presents the results of transient stability analysis of the synchronous generator in the power system with high levels of photovoltaic (PV) penetration. With the increasing PV penetration levels, the capacity of the synchronous generator needs to be reduced relatively in order to maintain power supply-demand balance. This leads to the lower system inertia and the higher generator reactance, and hence the transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this paper, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.