骨再生用多孔无机纳米材料的研究进展

Huan Dai , Sepanta Hosseinpour , Shu Hua , Chun Xu
{"title":"骨再生用多孔无机纳米材料的研究进展","authors":"Huan Dai ,&nbsp;Sepanta Hosseinpour ,&nbsp;Shu Hua ,&nbsp;Chun Xu","doi":"10.26599/NTM.2022.9130005","DOIUrl":null,"url":null,"abstract":"<div><div>Porous inorganic materials such as mesoporous silica nanoparticles (MSNs), mesoporous bioactive glasses (MBGs), porous calcium phosphates, and metal-organic frameworks (MOFs) are used for bone regeneration due to their osteoinductive and porous properties. The direct osteogenesis ability can be adjusted by the design and composition of those inorganic materials. With porous structure, adjustable pore size and high surface area, they are used as carriers to deliver various small molecular drugs, proteins, and genes locally to promote bone generation. The surface of those porous inorganic materials can be further functionalized to control the loading and release of drugs and modulate the behaviour of host cells. This review summarizes the recent advances of various porous inorganic nanomaterials for bone repairing with a focus on their performance as scaffolds and drug delivery systems. We also discuss the challenges and prospects of porous inorganic nanomaterials for the future clinical application for bone regeneration.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"1 1","pages":"Article e9130005"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in porous inorganic nanomaterials for bone regeneration\",\"authors\":\"Huan Dai ,&nbsp;Sepanta Hosseinpour ,&nbsp;Shu Hua ,&nbsp;Chun Xu\",\"doi\":\"10.26599/NTM.2022.9130005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Porous inorganic materials such as mesoporous silica nanoparticles (MSNs), mesoporous bioactive glasses (MBGs), porous calcium phosphates, and metal-organic frameworks (MOFs) are used for bone regeneration due to their osteoinductive and porous properties. The direct osteogenesis ability can be adjusted by the design and composition of those inorganic materials. With porous structure, adjustable pore size and high surface area, they are used as carriers to deliver various small molecular drugs, proteins, and genes locally to promote bone generation. The surface of those porous inorganic materials can be further functionalized to control the loading and release of drugs and modulate the behaviour of host cells. This review summarizes the recent advances of various porous inorganic nanomaterials for bone repairing with a focus on their performance as scaffolds and drug delivery systems. We also discuss the challenges and prospects of porous inorganic nanomaterials for the future clinical application for bone regeneration.</div></div>\",\"PeriodicalId\":100941,\"journal\":{\"name\":\"Nano TransMed\",\"volume\":\"1 1\",\"pages\":\"Article e9130005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano TransMed\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2790676023000432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676023000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in porous inorganic nanomaterials for bone regeneration
Porous inorganic materials such as mesoporous silica nanoparticles (MSNs), mesoporous bioactive glasses (MBGs), porous calcium phosphates, and metal-organic frameworks (MOFs) are used for bone regeneration due to their osteoinductive and porous properties. The direct osteogenesis ability can be adjusted by the design and composition of those inorganic materials. With porous structure, adjustable pore size and high surface area, they are used as carriers to deliver various small molecular drugs, proteins, and genes locally to promote bone generation. The surface of those porous inorganic materials can be further functionalized to control the loading and release of drugs and modulate the behaviour of host cells. This review summarizes the recent advances of various porous inorganic nanomaterials for bone repairing with a focus on their performance as scaffolds and drug delivery systems. We also discuss the challenges and prospects of porous inorganic nanomaterials for the future clinical application for bone regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信