基于卷积神经网络的图像分类预处理

Kuntal Kumar Pal, K. S. Sudeep
{"title":"基于卷积神经网络的图像分类预处理","authors":"Kuntal Kumar Pal, K. S. Sudeep","doi":"10.1109/RTEICT.2016.7808140","DOIUrl":null,"url":null,"abstract":"In recent times, the Convolutional Neural Networks have become the most powerful method for image classification. Various researchers have shown the importance of network architecture in achieving better performances by making changes in different layers of the network. Some have shown the importance of the neuron's activation by using various types of activation functions. But here we have shown the importance of preprocessing techniques for image classification using the CIFAR10 dataset and three variations of the Convolutional Neural Network. The results that we have achieved, clearly shows that the Zero Component Analysis(ZCA) outperforms both the Mean Normalization and Standardization techniques for all the three networks and thus it is the most important preprocessing technique for image classification with Convolutional Neural Networks.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"2014 1","pages":"1778-1781"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Preprocessing for image classification by convolutional neural networks\",\"authors\":\"Kuntal Kumar Pal, K. S. Sudeep\",\"doi\":\"10.1109/RTEICT.2016.7808140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times, the Convolutional Neural Networks have become the most powerful method for image classification. Various researchers have shown the importance of network architecture in achieving better performances by making changes in different layers of the network. Some have shown the importance of the neuron's activation by using various types of activation functions. But here we have shown the importance of preprocessing techniques for image classification using the CIFAR10 dataset and three variations of the Convolutional Neural Network. The results that we have achieved, clearly shows that the Zero Component Analysis(ZCA) outperforms both the Mean Normalization and Standardization techniques for all the three networks and thus it is the most important preprocessing technique for image classification with Convolutional Neural Networks.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"2014 1\",\"pages\":\"1778-1781\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7808140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7808140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

近年来,卷积神经网络已成为最强大的图像分类方法。许多研究人员已经表明,通过改变网络的不同层,网络架构在实现更好的性能方面的重要性。一些人通过使用各种类型的激活函数来显示神经元激活的重要性。但在这里,我们已经展示了使用CIFAR10数据集和卷积神经网络的三种变体的图像分类预处理技术的重要性。我们所取得的结果清楚地表明,零分量分析(ZCA)在所有三种网络中都优于均值归一化和标准化技术,因此它是卷积神经网络图像分类中最重要的预处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing for image classification by convolutional neural networks
In recent times, the Convolutional Neural Networks have become the most powerful method for image classification. Various researchers have shown the importance of network architecture in achieving better performances by making changes in different layers of the network. Some have shown the importance of the neuron's activation by using various types of activation functions. But here we have shown the importance of preprocessing techniques for image classification using the CIFAR10 dataset and three variations of the Convolutional Neural Network. The results that we have achieved, clearly shows that the Zero Component Analysis(ZCA) outperforms both the Mean Normalization and Standardization techniques for all the three networks and thus it is the most important preprocessing technique for image classification with Convolutional Neural Networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信