Raymond J. Wieser, Yu Wang, A. Fairbrother, Sophia Napoli, S. Julien, Adam W. Hauser, Liang Ji, Kai-tai Wan, G. O'brien, R. French, M. Kempe, X. Gu, K. Boyce, L. Bruckman
{"title":"真实世界和加速暴露的光伏组件背板退化的表征","authors":"Raymond J. Wieser, Yu Wang, A. Fairbrother, Sophia Napoli, S. Julien, Adam W. Hauser, Liang Ji, Kai-tai Wan, G. O'brien, R. French, M. Kempe, X. Gu, K. Boyce, L. Bruckman","doi":"10.1109/PVSC40753.2019.9198979","DOIUrl":null,"url":null,"abstract":"Backsheet degradation is key to maintaining the lifetime of photovoltaic (PV) modules. Cracking, delamination, bubbling, and discoloration are main types of degradation. PV modules were collected from PV installations in multiple climatic zones. Multiple types of backsheets were obtained with poly(ethylene teraphlate) (PET) and polyamide air side layers being the largest number of backsheets retrieved. Multiple commercial PV backsheets were exposed to multiple accelerated exposures and key degradation mechanisms were identified. Polyamide backsheets showed cracking in retrieved modules and under accelerated exposures. Poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF) showed the highest stability in retrieved and accelerated exposures. While polyamide had the largest amount of large scale degradation.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterization of Real-world and Accelerated Exposed PV Module Backsheet Degradation\",\"authors\":\"Raymond J. Wieser, Yu Wang, A. Fairbrother, Sophia Napoli, S. Julien, Adam W. Hauser, Liang Ji, Kai-tai Wan, G. O'brien, R. French, M. Kempe, X. Gu, K. Boyce, L. Bruckman\",\"doi\":\"10.1109/PVSC40753.2019.9198979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backsheet degradation is key to maintaining the lifetime of photovoltaic (PV) modules. Cracking, delamination, bubbling, and discoloration are main types of degradation. PV modules were collected from PV installations in multiple climatic zones. Multiple types of backsheets were obtained with poly(ethylene teraphlate) (PET) and polyamide air side layers being the largest number of backsheets retrieved. Multiple commercial PV backsheets were exposed to multiple accelerated exposures and key degradation mechanisms were identified. Polyamide backsheets showed cracking in retrieved modules and under accelerated exposures. Poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF) showed the highest stability in retrieved and accelerated exposures. While polyamide had the largest amount of large scale degradation.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"9 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Real-world and Accelerated Exposed PV Module Backsheet Degradation
Backsheet degradation is key to maintaining the lifetime of photovoltaic (PV) modules. Cracking, delamination, bubbling, and discoloration are main types of degradation. PV modules were collected from PV installations in multiple climatic zones. Multiple types of backsheets were obtained with poly(ethylene teraphlate) (PET) and polyamide air side layers being the largest number of backsheets retrieved. Multiple commercial PV backsheets were exposed to multiple accelerated exposures and key degradation mechanisms were identified. Polyamide backsheets showed cracking in retrieved modules and under accelerated exposures. Poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF) showed the highest stability in retrieved and accelerated exposures. While polyamide had the largest amount of large scale degradation.