自动问题生成技术的比较

Walelign Tewabe Sewunetie, L. Kovács
{"title":"自动问题生成技术的比较","authors":"Walelign Tewabe Sewunetie, L. Kovács","doi":"10.1109/CINTI-MACRo57952.2022.10029559","DOIUrl":null,"url":null,"abstract":"Automatic question generation is a technique that generates a question from various sources like structured or unstructured content. Even if, each method has its own shortcoming and strength, we didn’t find any study that did an experimental comparison of the current automatic question generation techniques using a similar dataset. In this study, we analyzed the different state-of-the-art research works, and we identified significant challenges of each model. In addition, we have used BLEU, METEOR, and ROUGE automatic evaluation metrics, to evaluate the experimental test result. From our evaluation result, we observed that most of the tested techniques score below 0.5 in all automated evaluation metrics. Out of tested techniques T5-transformer-based, scores the maximum result. This result point out this research area still needs further investigation and preparing standardized training.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"9 1","pages":"000025-000030"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Automatic Question Generation Techniques\",\"authors\":\"Walelign Tewabe Sewunetie, L. Kovács\",\"doi\":\"10.1109/CINTI-MACRo57952.2022.10029559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic question generation is a technique that generates a question from various sources like structured or unstructured content. Even if, each method has its own shortcoming and strength, we didn’t find any study that did an experimental comparison of the current automatic question generation techniques using a similar dataset. In this study, we analyzed the different state-of-the-art research works, and we identified significant challenges of each model. In addition, we have used BLEU, METEOR, and ROUGE automatic evaluation metrics, to evaluate the experimental test result. From our evaluation result, we observed that most of the tested techniques score below 0.5 in all automated evaluation metrics. Out of tested techniques T5-transformer-based, scores the maximum result. This result point out this research area still needs further investigation and preparing standardized training.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"9 1\",\"pages\":\"000025-000030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动问题生成是一种从各种来源(如结构化或非结构化内容)生成问题的技术。即使每种方法都有自己的缺点和优点,我们也没有发现任何使用类似数据集对当前自动问题生成技术进行实验比较的研究。在本研究中,我们分析了不同的最先进的研究工作,并确定了每个模型的重大挑战。此外,我们还使用BLEU、METEOR和ROUGE自动评估指标,对实验测试结果进行评估。从我们的评估结果中,我们观察到大多数测试技术在所有自动化评估度量中的得分低于0.5。在测试的技术t5变压器为基础,得分最高的结果。这一结果指出该研究领域仍需进一步调查和准备规范化培训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Automatic Question Generation Techniques
Automatic question generation is a technique that generates a question from various sources like structured or unstructured content. Even if, each method has its own shortcoming and strength, we didn’t find any study that did an experimental comparison of the current automatic question generation techniques using a similar dataset. In this study, we analyzed the different state-of-the-art research works, and we identified significant challenges of each model. In addition, we have used BLEU, METEOR, and ROUGE automatic evaluation metrics, to evaluate the experimental test result. From our evaluation result, we observed that most of the tested techniques score below 0.5 in all automated evaluation metrics. Out of tested techniques T5-transformer-based, scores the maximum result. This result point out this research area still needs further investigation and preparing standardized training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信