{"title":"聚合物纤维制造对环境的影响","authors":"Manul Amarakoon, Hussain Alenezi, Shervanthi Homer-Vanniasinkam, Mohan Edirisinghe","doi":"10.1002/mame.202200356","DOIUrl":null,"url":null,"abstract":"<p>This review focuses on the effects on the environment due to the production of polymer-solvent solutions and the manufacture of polymeric fibers of thicknesses from a nanometer up to a millimeter using these solutions. The most common polymeric fiber manufacture methods are reviewed based on their effects on the environment, particularly from the use of hazardous materials and energy consumption. Published literature is utilized to analyze and quantify energy consumption of the manufacturing methods electrospinning, phase separation, self-assembly, template synthesis, drawing and pressurized gyration. The results show that during the manufacturing stage of the lifecycle of polymeric fibers, pressurized gyration is more environmentally efficient primarily due to its mass-producing features and fast processing of polymeric solutions into fibers, it also works best with water-based solutions. Further green alternatives are described such as the use of sustainable polymers and solvents to enhance the environmental benefit. Overall, it is shown that the most effective method of curbing the environmental impact of manufacturing polymeric fibers is the use of nontoxic, water-soluble polymers along with the evasion of toxic solvents.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"307 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202200356","citationCount":"3","resultStr":"{\"title\":\"Environmental Impact of Polymer Fiber Manufacture\",\"authors\":\"Manul Amarakoon, Hussain Alenezi, Shervanthi Homer-Vanniasinkam, Mohan Edirisinghe\",\"doi\":\"10.1002/mame.202200356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review focuses on the effects on the environment due to the production of polymer-solvent solutions and the manufacture of polymeric fibers of thicknesses from a nanometer up to a millimeter using these solutions. The most common polymeric fiber manufacture methods are reviewed based on their effects on the environment, particularly from the use of hazardous materials and energy consumption. Published literature is utilized to analyze and quantify energy consumption of the manufacturing methods electrospinning, phase separation, self-assembly, template synthesis, drawing and pressurized gyration. The results show that during the manufacturing stage of the lifecycle of polymeric fibers, pressurized gyration is more environmentally efficient primarily due to its mass-producing features and fast processing of polymeric solutions into fibers, it also works best with water-based solutions. Further green alternatives are described such as the use of sustainable polymers and solvents to enhance the environmental benefit. Overall, it is shown that the most effective method of curbing the environmental impact of manufacturing polymeric fibers is the use of nontoxic, water-soluble polymers along with the evasion of toxic solvents.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"307 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202200356\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202200356\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202200356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
This review focuses on the effects on the environment due to the production of polymer-solvent solutions and the manufacture of polymeric fibers of thicknesses from a nanometer up to a millimeter using these solutions. The most common polymeric fiber manufacture methods are reviewed based on their effects on the environment, particularly from the use of hazardous materials and energy consumption. Published literature is utilized to analyze and quantify energy consumption of the manufacturing methods electrospinning, phase separation, self-assembly, template synthesis, drawing and pressurized gyration. The results show that during the manufacturing stage of the lifecycle of polymeric fibers, pressurized gyration is more environmentally efficient primarily due to its mass-producing features and fast processing of polymeric solutions into fibers, it also works best with water-based solutions. Further green alternatives are described such as the use of sustainable polymers and solvents to enhance the environmental benefit. Overall, it is shown that the most effective method of curbing the environmental impact of manufacturing polymeric fibers is the use of nontoxic, water-soluble polymers along with the evasion of toxic solvents.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)