Hasanain A.H. Al-Behadili, Saddam K.A. AlWane, Yasir I.A. Al-Yasir, Naser Ojaroudi Parchin, Peter Olley, Raed A. Abd-Alhameed
{"title":"在大范围无线传感器网络中使用多个移动接收器","authors":"Hasanain A.H. Al-Behadili, Saddam K.A. AlWane, Yasir I.A. Al-Yasir, Naser Ojaroudi Parchin, Peter Olley, Raed A. Abd-Alhameed","doi":"10.1049/iet-wss.2019.0208","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Sensing coverage and network connectivity are two of the most fundamental issues to ensure that there are effective environmental sensing and robust data communication in a wireless sensor network (WSN) application. Random positioning of nodes in a WSN may result in random connectivity, which can cause a large variety of key parameters within the WSN. For example, data latency and battery lifetime can lead to the isolation of nodes, which causes a disconnection between nodes within the network. These problems can be avoided by using mobile data sinks, which travel between nodes that have connection problems. This research aims to design, test, and optimise a data collection system that addresses the isolated node problem, as well as to improve the connectivity between sensor nodes and base station, and to reduce the energy consumption simultaneously. In addition, this system will help to solve several problems such as the imbalance of delay and hotspot problems. The effort in this study is focused on the feasibility of using the proposed methodology in different applications. More ongoing experimental work will aim to provide a detailed study for advanced applications, e.g. transport systems for civil purposes.</p>\n </div>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-wss.2019.0208","citationCount":"4","resultStr":"{\"title\":\"Use of multiple mobile sinks in wireless sensor networks for large-scale areas\",\"authors\":\"Hasanain A.H. Al-Behadili, Saddam K.A. AlWane, Yasir I.A. Al-Yasir, Naser Ojaroudi Parchin, Peter Olley, Raed A. Abd-Alhameed\",\"doi\":\"10.1049/iet-wss.2019.0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Sensing coverage and network connectivity are two of the most fundamental issues to ensure that there are effective environmental sensing and robust data communication in a wireless sensor network (WSN) application. Random positioning of nodes in a WSN may result in random connectivity, which can cause a large variety of key parameters within the WSN. For example, data latency and battery lifetime can lead to the isolation of nodes, which causes a disconnection between nodes within the network. These problems can be avoided by using mobile data sinks, which travel between nodes that have connection problems. This research aims to design, test, and optimise a data collection system that addresses the isolated node problem, as well as to improve the connectivity between sensor nodes and base station, and to reduce the energy consumption simultaneously. In addition, this system will help to solve several problems such as the imbalance of delay and hotspot problems. The effort in this study is focused on the feasibility of using the proposed methodology in different applications. More ongoing experimental work will aim to provide a detailed study for advanced applications, e.g. transport systems for civil purposes.</p>\\n </div>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-wss.2019.0208\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2019.0208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2019.0208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Use of multiple mobile sinks in wireless sensor networks for large-scale areas
Sensing coverage and network connectivity are two of the most fundamental issues to ensure that there are effective environmental sensing and robust data communication in a wireless sensor network (WSN) application. Random positioning of nodes in a WSN may result in random connectivity, which can cause a large variety of key parameters within the WSN. For example, data latency and battery lifetime can lead to the isolation of nodes, which causes a disconnection between nodes within the network. These problems can be avoided by using mobile data sinks, which travel between nodes that have connection problems. This research aims to design, test, and optimise a data collection system that addresses the isolated node problem, as well as to improve the connectivity between sensor nodes and base station, and to reduce the energy consumption simultaneously. In addition, this system will help to solve several problems such as the imbalance of delay and hotspot problems. The effort in this study is focused on the feasibility of using the proposed methodology in different applications. More ongoing experimental work will aim to provide a detailed study for advanced applications, e.g. transport systems for civil purposes.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.