{"title":"一种改进的全卷积网络在裂纹损伤识别中的应用","authors":"Meng Meng, Kun Zhu, Keqin Chen, Hang Qu","doi":"10.1155/2021/5298882","DOIUrl":null,"url":null,"abstract":"Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"8 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Modified Fully Convolutional Network for Crack Damage Identification Compared with Conventional Methods\",\"authors\":\"Meng Meng, Kun Zhu, Keqin Chen, Hang Qu\",\"doi\":\"10.1155/2021/5298882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5298882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5298882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Modified Fully Convolutional Network for Crack Damage Identification Compared with Conventional Methods
Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.