一种改进的全卷积网络在裂纹损伤识别中的应用

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
Meng Meng, Kun Zhu, Keqin Chen, Hang Qu
{"title":"一种改进的全卷积网络在裂纹损伤识别中的应用","authors":"Meng Meng, Kun Zhu, Keqin Chen, Hang Qu","doi":"10.1155/2021/5298882","DOIUrl":null,"url":null,"abstract":"Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"8 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Modified Fully Convolutional Network for Crack Damage Identification Compared with Conventional Methods\",\"authors\":\"Meng Meng, Kun Zhu, Keqin Chen, Hang Qu\",\"doi\":\"10.1155/2021/5298882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5298882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5298882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

水下隐蔽结构的大规模健康监测与损伤检测一直是土木工程领域亟待解决的前沿问题。随着人工智能的发展,特别是深度学习与计算机视觉的结合,基于卷积神经网络(CNN)的混凝土裂缝检测比传统方法具有更大的优势。但是,这些机器学习(ML)方法仍然存在一些缺陷,例如不准确或不强,泛化能力差,或者精度仍有待提高,运行速度较慢。本文提出了一种改进的全卷积网络(FCN),具有更强的鲁棒性和有效性,与其他方法相比,可以方便、低成本地进行结构的长期监测和检测。同时,为了提高识别和预测的准确性,本研究进行了以下创新。此外,与常见的简单反卷积不同,它还包含了亚像素卷积层,可以大大减少采样时间。验证了该方法的实用性,总体识别准确率达到97.92%,效率提高12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Fully Convolutional Network for Crack Damage Identification Compared with Conventional Methods
Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信