实例匹配的上下文独立本体关联数据对齐方法

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Armando Barbosa, I. Bittencourt, S. Siqueira, Diego Dermeval, Nicholas J. T. Cruz
{"title":"实例匹配的上下文独立本体关联数据对齐方法","authors":"Armando Barbosa, I. Bittencourt, S. Siqueira, Diego Dermeval, Nicholas J. T. Cruz","doi":"10.4018/ijswis.295977","DOIUrl":null,"url":null,"abstract":"Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"16 1","pages":"1-29"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Context-Independent Ontological Linked Data Alignment Approach to Instance Matching\",\"authors\":\"Armando Barbosa, I. Bittencourt, S. Siqueira, Diego Dermeval, Nicholas J. T. Cruz\",\"doi\":\"10.4018/ijswis.295977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"16 1\",\"pages\":\"1-29\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.295977\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.295977","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

通过在不同数据集中查找匹配实例来链接数据需要考虑许多特征,例如结构异构性、隐式知识和面向URI(统一资源标识符)的标识。作者提出了一种上下文无关的方法,通过基于本体论模型的组件并考虑数据的多维度的对齐过程来对齐关联数据。研究人员针对两种方法对两个数据集中的关联数据进行了实验,并评估了精度、召回率和f-measure指标。作者还在一个真实的场景中进行了一个案例研究,考虑了巴西关于计算机和教育的出版物数据集。本研究的结果表明,该方法克服了其他方法(关于精度,召回率和f-measure指标),在改变数据集域时需要更少的工作。这项工作的主要贡献包括实现真实数据集的半自动链接,提出了一种能够计算资源相似度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Context-Independent Ontological Linked Data Alignment Approach to Instance Matching
Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信