Lingxiao Meng, Wenze Shi, Chao Lu, Guo Chen, F. Qiu, Yi Zhu, Y. Liu, Shuanglin Guo
{"title":"激光emat的优化设计及其在高温锻件检测中的应用","authors":"Lingxiao Meng, Wenze Shi, Chao Lu, Guo Chen, F. Qiu, Yi Zhu, Y. Liu, Shuanglin Guo","doi":"10.3233/jae-230003","DOIUrl":null,"url":null,"abstract":"In high-temperature continuous forging process, according to the real-time monitoring of workpiece thickness and flaws, the processing parameters can be adjusted accordingly, so we can remove defective components in time, which has essential research value for avoiding the interruption of production line and improving their yield and quality grade. We established a finite element (FE) model of the carbon steel’s laser-electromagnetic acoustic transducer (laser-EMAT) testing process. Based on the simulation model, we analyzed the effects of laser parameters, EMAT parameters, and sample thickness on the detected ultrasonic signal amplitude, and we also achieved the optimized Laser-EMAT design parameters. Subsequently, we developed a high-temperature resistant spiral coil EMAT and measured the high-temperature forging with a thickness of 100 mm and temperatures from 300 °C to 730 °C. Based on the experiments, we researched the effect of specimen temperature on the received ultrasonic wave amplitude. The results show that the excitation efficiency of laser-induced ultrasonic waves improves by decreasing pulse duration, decreasing laser spot radius, and increasing pulse laser energy. The receiving efficiency of the shear wave (SW) detected by the EMAT enhances when reducing the diameter of the EMAT wire and increasing the permanent magnet height. When the radius of the permanent magnet is equal to the radius of the EMAT coil, the receiving efficiency of SW is the highest. As the sample thickness increases, the size of the EMAT should increase accordingly to the acoustic beam divergence for obtaining a higher ultrasonic wave intensity. The amplitude of the SW signal received by the EMAT increases by 679% after the optimization design. With rising carbon steel forging temperature, the SW signal amplitude increases first and then decreases sharply, reaching its maximum at 617 °C, which is 29% higher than at room temperature, and the signal-to-noise ratio (SNR) of the SW is 20.5 dB.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"60 5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization design of laser-EMAT and its application in high-temperature forgings detection\",\"authors\":\"Lingxiao Meng, Wenze Shi, Chao Lu, Guo Chen, F. Qiu, Yi Zhu, Y. Liu, Shuanglin Guo\",\"doi\":\"10.3233/jae-230003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-temperature continuous forging process, according to the real-time monitoring of workpiece thickness and flaws, the processing parameters can be adjusted accordingly, so we can remove defective components in time, which has essential research value for avoiding the interruption of production line and improving their yield and quality grade. We established a finite element (FE) model of the carbon steel’s laser-electromagnetic acoustic transducer (laser-EMAT) testing process. Based on the simulation model, we analyzed the effects of laser parameters, EMAT parameters, and sample thickness on the detected ultrasonic signal amplitude, and we also achieved the optimized Laser-EMAT design parameters. Subsequently, we developed a high-temperature resistant spiral coil EMAT and measured the high-temperature forging with a thickness of 100 mm and temperatures from 300 °C to 730 °C. Based on the experiments, we researched the effect of specimen temperature on the received ultrasonic wave amplitude. The results show that the excitation efficiency of laser-induced ultrasonic waves improves by decreasing pulse duration, decreasing laser spot radius, and increasing pulse laser energy. The receiving efficiency of the shear wave (SW) detected by the EMAT enhances when reducing the diameter of the EMAT wire and increasing the permanent magnet height. When the radius of the permanent magnet is equal to the radius of the EMAT coil, the receiving efficiency of SW is the highest. As the sample thickness increases, the size of the EMAT should increase accordingly to the acoustic beam divergence for obtaining a higher ultrasonic wave intensity. The amplitude of the SW signal received by the EMAT increases by 679% after the optimization design. With rising carbon steel forging temperature, the SW signal amplitude increases first and then decreases sharply, reaching its maximum at 617 °C, which is 29% higher than at room temperature, and the signal-to-noise ratio (SNR) of the SW is 20.5 dB.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"60 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimization design of laser-EMAT and its application in high-temperature forgings detection
In high-temperature continuous forging process, according to the real-time monitoring of workpiece thickness and flaws, the processing parameters can be adjusted accordingly, so we can remove defective components in time, which has essential research value for avoiding the interruption of production line and improving their yield and quality grade. We established a finite element (FE) model of the carbon steel’s laser-electromagnetic acoustic transducer (laser-EMAT) testing process. Based on the simulation model, we analyzed the effects of laser parameters, EMAT parameters, and sample thickness on the detected ultrasonic signal amplitude, and we also achieved the optimized Laser-EMAT design parameters. Subsequently, we developed a high-temperature resistant spiral coil EMAT and measured the high-temperature forging with a thickness of 100 mm and temperatures from 300 °C to 730 °C. Based on the experiments, we researched the effect of specimen temperature on the received ultrasonic wave amplitude. The results show that the excitation efficiency of laser-induced ultrasonic waves improves by decreasing pulse duration, decreasing laser spot radius, and increasing pulse laser energy. The receiving efficiency of the shear wave (SW) detected by the EMAT enhances when reducing the diameter of the EMAT wire and increasing the permanent magnet height. When the radius of the permanent magnet is equal to the radius of the EMAT coil, the receiving efficiency of SW is the highest. As the sample thickness increases, the size of the EMAT should increase accordingly to the acoustic beam divergence for obtaining a higher ultrasonic wave intensity. The amplitude of the SW signal received by the EMAT increases by 679% after the optimization design. With rising carbon steel forging temperature, the SW signal amplitude increases first and then decreases sharply, reaching its maximum at 617 °C, which is 29% higher than at room temperature, and the signal-to-noise ratio (SNR) of the SW is 20.5 dB.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.