{"title":"一种基于数据增强的心肌图像分类新方法","authors":"Qingyong Zhu","doi":"10.14569/ijacsa.2023.0140695","DOIUrl":null,"url":null,"abstract":"Myocarditis is an important public health concern since it can cause heart failure and abrupt death. It can be diagnosed with magnetic resonance imaging (MRI) of the heart, a non-invasive imaging technology with the potential for operator bias. The study provides a deep learning-based model for myocarditis detection using CMR images to support medical professionals. The proposed architecture comprises a convolutional neural network (CNN), a fully-connected decision layer, a generative adversarial network (GAN)-based algorithm for data augmentation, an enhanced DE for pre-training weights, and a reinforcement learning-based method for training. We present a new method of employing produced images for data augmentation based on GAN to improve the classification performance of the provided CNN. Unbalanced data is one of the most significant classification issues, as negative samples are more than positive, decimating system performance. To solve this issue, we offer an RL-based training method that learns minority class examples with attention. In addition, we tackle the challenges associated with the training step, which typically relies on gradient-based techniques for the learning process; however, these methods often face issues like sensitivity to initialization. To start the BP process, we present an improved differential evolution (DE) technique that leverages a clustering-based mutation operator. It recognizes a successful cluster for DE and applies an original updating strategy to produce potential solutions. We assess our suggested model on the Z-Alizadeh Sani myocarditis dataset and show that it outperforms other methods. Keywords—Myocarditis; generative adversarial network; data augmentation; differential evolution","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Myocardial Image Classification using Data Augmentation\",\"authors\":\"Qingyong Zhu\",\"doi\":\"10.14569/ijacsa.2023.0140695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myocarditis is an important public health concern since it can cause heart failure and abrupt death. It can be diagnosed with magnetic resonance imaging (MRI) of the heart, a non-invasive imaging technology with the potential for operator bias. The study provides a deep learning-based model for myocarditis detection using CMR images to support medical professionals. The proposed architecture comprises a convolutional neural network (CNN), a fully-connected decision layer, a generative adversarial network (GAN)-based algorithm for data augmentation, an enhanced DE for pre-training weights, and a reinforcement learning-based method for training. We present a new method of employing produced images for data augmentation based on GAN to improve the classification performance of the provided CNN. Unbalanced data is one of the most significant classification issues, as negative samples are more than positive, decimating system performance. To solve this issue, we offer an RL-based training method that learns minority class examples with attention. In addition, we tackle the challenges associated with the training step, which typically relies on gradient-based techniques for the learning process; however, these methods often face issues like sensitivity to initialization. To start the BP process, we present an improved differential evolution (DE) technique that leverages a clustering-based mutation operator. It recognizes a successful cluster for DE and applies an original updating strategy to produce potential solutions. We assess our suggested model on the Z-Alizadeh Sani myocarditis dataset and show that it outperforms other methods. Keywords—Myocarditis; generative adversarial network; data augmentation; differential evolution\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Novel Method for Myocardial Image Classification using Data Augmentation
Myocarditis is an important public health concern since it can cause heart failure and abrupt death. It can be diagnosed with magnetic resonance imaging (MRI) of the heart, a non-invasive imaging technology with the potential for operator bias. The study provides a deep learning-based model for myocarditis detection using CMR images to support medical professionals. The proposed architecture comprises a convolutional neural network (CNN), a fully-connected decision layer, a generative adversarial network (GAN)-based algorithm for data augmentation, an enhanced DE for pre-training weights, and a reinforcement learning-based method for training. We present a new method of employing produced images for data augmentation based on GAN to improve the classification performance of the provided CNN. Unbalanced data is one of the most significant classification issues, as negative samples are more than positive, decimating system performance. To solve this issue, we offer an RL-based training method that learns minority class examples with attention. In addition, we tackle the challenges associated with the training step, which typically relies on gradient-based techniques for the learning process; however, these methods often face issues like sensitivity to initialization. To start the BP process, we present an improved differential evolution (DE) technique that leverages a clustering-based mutation operator. It recognizes a successful cluster for DE and applies an original updating strategy to produce potential solutions. We assess our suggested model on the Z-Alizadeh Sani myocarditis dataset and show that it outperforms other methods. Keywords—Myocarditis; generative adversarial network; data augmentation; differential evolution
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications