使用双能量计算机断层扫描评估3d可打印材料的成像特性

Lisa M Rowley, Elizabeth Davies, Emma Chung
{"title":"使用双能量计算机断层扫描评估3d可打印材料的成像特性","authors":"Lisa M Rowley, Elizabeth Davies, Emma Chung","doi":"10.2217/3dp-2022-0019","DOIUrl":null,"url":null,"abstract":"Aim: Assessment of the imaging properties of 3D-printable materials using dual energy computed tomography (DECT) to match clinical values for imaging phantoms. Methods: 3D-printed samples were imaged using DECT. Regions of interest were analyzed to assess spectral computed tomography (CT) numbers at various energies and measure the electron density (ρe) and effective atomic number (Zeff). Results: Electron density was proportional to the CT number for the materials assessed with Zeff between 6.43 and 7.01. The measured CT number increased with monochromatic energy for all but one sample. Conclusion: A single DECT scan provides valuable information regarding the properties of 3D-printable material due to the ease of measurement of ρe and Zeff. The majority of 3D-printed materials analyzed behaved like adipose tissue across a range of energies in CT imaging.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"27 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the imaging properties of 3D-printable material using dual energy computed tomography\",\"authors\":\"Lisa M Rowley, Elizabeth Davies, Emma Chung\",\"doi\":\"10.2217/3dp-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Assessment of the imaging properties of 3D-printable materials using dual energy computed tomography (DECT) to match clinical values for imaging phantoms. Methods: 3D-printed samples were imaged using DECT. Regions of interest were analyzed to assess spectral computed tomography (CT) numbers at various energies and measure the electron density (ρe) and effective atomic number (Zeff). Results: Electron density was proportional to the CT number for the materials assessed with Zeff between 6.43 and 7.01. The measured CT number increased with monochromatic energy for all but one sample. Conclusion: A single DECT scan provides valuable information regarding the properties of 3D-printable material due to the ease of measurement of ρe and Zeff. The majority of 3D-printed materials analyzed behaved like adipose tissue across a range of energies in CT imaging.\",\"PeriodicalId\":73578,\"journal\":{\"name\":\"Journal of 3D printing in medicine\",\"volume\":\"27 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of 3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/3dp-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用双能计算机断层扫描(DECT)评估3d可打印材料的成像特性,以匹配临床成像幻象值。方法:采用DECT对3d打印样品进行成像。对感兴趣的区域进行分析,以评估不同能量下的光谱计算机断层扫描(CT)数,并测量电子密度(ρe)和有效原子序数(Zeff)。结果:Zeff评估材料的电子密度与CT数成正比,介于6.43 ~ 7.01之间。除了一个样品外,所有样品的CT值随单色能量的增加而增加。结论:由于易于测量ρe和Zeff,单次DECT扫描提供了有关3d可打印材料特性的有价值的信息。大多数3d打印材料在CT成像的能量范围内表现得像脂肪组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the imaging properties of 3D-printable material using dual energy computed tomography
Aim: Assessment of the imaging properties of 3D-printable materials using dual energy computed tomography (DECT) to match clinical values for imaging phantoms. Methods: 3D-printed samples were imaged using DECT. Regions of interest were analyzed to assess spectral computed tomography (CT) numbers at various energies and measure the electron density (ρe) and effective atomic number (Zeff). Results: Electron density was proportional to the CT number for the materials assessed with Zeff between 6.43 and 7.01. The measured CT number increased with monochromatic energy for all but one sample. Conclusion: A single DECT scan provides valuable information regarding the properties of 3D-printable material due to the ease of measurement of ρe and Zeff. The majority of 3D-printed materials analyzed behaved like adipose tissue across a range of energies in CT imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信