{"title":"一种新型激光重熔表面结构机理的研究","authors":"Jilin Xu, Ping Zou, Lu Liu, Wenjie Wang, Di Kang","doi":"10.1016/j.surfcoat.2022.128615","DOIUrl":null,"url":null,"abstract":"<div><p>A new method of surface structuring by laser remelting with the help of surface tension (mainly thermocapillary force and solutocapillary force) and volume expansion was proposed. A multiphysics coupled numerical model was proposed for this surface structuring method, in which the calculation of surface tension and solutocapillary force is improved. Using the established numerical model, the formation mechanism of the surface structure was explored from the aspects of surface tension, fluid flow, volume expansion, and surface profile evolution. The reason why the surface structure changes from a “W” shape to an “A” shape was explained, and the contributions of thermocapillary force, solutocapillary force, and volume expansion to the surface structure were investigated. The effects of laser power, scanning speed, and beam diameter on the surface profile of the surface structure were studied by experiments, which indicates that the desired surface structure can be obtained by adjusting the process parameters. All the experimental results were simulated by the established numerical model, and the simulation results are in good agreement with the experimental results, indicating that the numerical model is effective and available.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"443 ","pages":"Article 128615"},"PeriodicalIF":6.1000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigation on the mechanism of a new laser surface structuring by laser remelting\",\"authors\":\"Jilin Xu, Ping Zou, Lu Liu, Wenjie Wang, Di Kang\",\"doi\":\"10.1016/j.surfcoat.2022.128615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new method of surface structuring by laser remelting with the help of surface tension (mainly thermocapillary force and solutocapillary force) and volume expansion was proposed. A multiphysics coupled numerical model was proposed for this surface structuring method, in which the calculation of surface tension and solutocapillary force is improved. Using the established numerical model, the formation mechanism of the surface structure was explored from the aspects of surface tension, fluid flow, volume expansion, and surface profile evolution. The reason why the surface structure changes from a “W” shape to an “A” shape was explained, and the contributions of thermocapillary force, solutocapillary force, and volume expansion to the surface structure were investigated. The effects of laser power, scanning speed, and beam diameter on the surface profile of the surface structure were studied by experiments, which indicates that the desired surface structure can be obtained by adjusting the process parameters. All the experimental results were simulated by the established numerical model, and the simulation results are in good agreement with the experimental results, indicating that the numerical model is effective and available.</p></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"443 \",\"pages\":\"Article 128615\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897222005369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897222005369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Investigation on the mechanism of a new laser surface structuring by laser remelting
A new method of surface structuring by laser remelting with the help of surface tension (mainly thermocapillary force and solutocapillary force) and volume expansion was proposed. A multiphysics coupled numerical model was proposed for this surface structuring method, in which the calculation of surface tension and solutocapillary force is improved. Using the established numerical model, the formation mechanism of the surface structure was explored from the aspects of surface tension, fluid flow, volume expansion, and surface profile evolution. The reason why the surface structure changes from a “W” shape to an “A” shape was explained, and the contributions of thermocapillary force, solutocapillary force, and volume expansion to the surface structure were investigated. The effects of laser power, scanning speed, and beam diameter on the surface profile of the surface structure were studied by experiments, which indicates that the desired surface structure can be obtained by adjusting the process parameters. All the experimental results were simulated by the established numerical model, and the simulation results are in good agreement with the experimental results, indicating that the numerical model is effective and available.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.