临界随机图中期望的最大块大小

Vonjy Rasendrahasina, Andry Rasoanaivo, V. Ravelomanana
{"title":"临界随机图中期望的最大块大小","authors":"Vonjy Rasendrahasina, Andry Rasoanaivo, V. Ravelomanana","doi":"10.1017/S0963548319000154","DOIUrl":null,"url":null,"abstract":"Abstract Let G(n,M) be a uniform random graph with n vertices and M edges. Let ${\\wp_{n,m}}$ be the maximum block size of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the expectation of ${\\wp_{n,m}}$ near the critical point M = n/2. When n − 2M ≫ n2/3, we find a constant c1 such that $$c_1 = \\lim_{n \\rightarrow \\infty} \\left({1 - \\frac{2M}{n}} \\right) \\,\\E({\\wp_{n,m}}).$$ Inside the window of transition of G(n,M) with M = (n/2)(1 + λn−1/3), where λ is any real number, we find an exact analytic expression for $$c_2(\\lambda) = \\lim_{n \\rightarrow \\infty} \\frac{\\E{\\left({\\wp_{n,{{(n/2)}({1+\\lambda n^{-1/3}})}}}\\right)}}{n^{1/3}}.$$ This study relies on the symbolic method and analytic tools from generating function theory, which enable us to describe the evolution of $n^{-1/3}\\,\\E{\\left({\\wp_{n,{{(n/2)}({1+\\lambda n^{-1/3}})}}}\\right)}$ as a function of λ.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expected Maximum Block Size in Critical Random Graphs\",\"authors\":\"Vonjy Rasendrahasina, Andry Rasoanaivo, V. Ravelomanana\",\"doi\":\"10.1017/S0963548319000154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G(n,M) be a uniform random graph with n vertices and M edges. Let ${\\\\wp_{n,m}}$ be the maximum block size of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the expectation of ${\\\\wp_{n,m}}$ near the critical point M = n/2. When n − 2M ≫ n2/3, we find a constant c1 such that $$c_1 = \\\\lim_{n \\\\rightarrow \\\\infty} \\\\left({1 - \\\\frac{2M}{n}} \\\\right) \\\\,\\\\E({\\\\wp_{n,m}}).$$ Inside the window of transition of G(n,M) with M = (n/2)(1 + λn−1/3), where λ is any real number, we find an exact analytic expression for $$c_2(\\\\lambda) = \\\\lim_{n \\\\rightarrow \\\\infty} \\\\frac{\\\\E{\\\\left({\\\\wp_{n,{{(n/2)}({1+\\\\lambda n^{-1/3}})}}}\\\\right)}}{n^{1/3}}.$$ This study relies on the symbolic method and analytic tools from generating function theory, which enable us to describe the evolution of $n^{-1/3}\\\\,\\\\E{\\\\left({\\\\wp_{n,{{(n/2)}({1+\\\\lambda n^{-1/3}})}}}\\\\right)}$ as a function of λ.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548319000154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设G(n,M)是一个有n个顶点和M条边的均匀随机图。设${\wp_{n,m}}$为G(n,M)的最大块大小,即其最大2连通诱导子图的最大大小。我们确定${\wp_{n,m}}$在临界点M = n/2附近的期望。当n−2M > n2/3时,我们找到了一个常数c1,使得$$c_1 = \lim_{n \rightarrow \infty} \left({1 - \frac{2M}{n}} \right) \,\E({\wp_{n,m}}).$$在M = (n/2)(1 + λn−1/3)的G(n,M)的跃迁窗口内,当λ为任意实数时,我们找到了$$c_2(\lambda) = \lim_{n \rightarrow \infty} \frac{\E{\left({\wp_{n,{{(n/2)}({1+\lambda n^{-1/3}})}}}\right)}}{n^{1/3}}.$$的精确解析表达式。本研究依靠生成函数理论中的符号方法和解析工具,使我们能够将$n^{-1/3}\,\E{\left({\wp_{n,{{(n/2)}({1+\lambda n^{-1/3}})}}}\right)}$的演化描述为λ的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Maximum Block Size in Critical Random Graphs
Abstract Let G(n,M) be a uniform random graph with n vertices and M edges. Let ${\wp_{n,m}}$ be the maximum block size of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the expectation of ${\wp_{n,m}}$ near the critical point M = n/2. When n − 2M ≫ n2/3, we find a constant c1 such that $$c_1 = \lim_{n \rightarrow \infty} \left({1 - \frac{2M}{n}} \right) \,\E({\wp_{n,m}}).$$ Inside the window of transition of G(n,M) with M = (n/2)(1 + λn−1/3), where λ is any real number, we find an exact analytic expression for $$c_2(\lambda) = \lim_{n \rightarrow \infty} \frac{\E{\left({\wp_{n,{{(n/2)}({1+\lambda n^{-1/3}})}}}\right)}}{n^{1/3}}.$$ This study relies on the symbolic method and analytic tools from generating function theory, which enable us to describe the evolution of $n^{-1/3}\,\E{\left({\wp_{n,{{(n/2)}({1+\lambda n^{-1/3}})}}}\right)}$ as a function of λ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信