{"title":"纳米级器件的能源效率和热管理","authors":"A. Liao, Z. Ong, A. Serov, F. Xiong, E. Pop","doi":"10.1109/SNW.2012.6243317","DOIUrl":null,"url":null,"abstract":"Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-efficiency and thermal management in nanoscale devices\",\"authors\":\"A. Liao, Z. Ong, A. Serov, F. Xiong, E. Pop\",\"doi\":\"10.1109/SNW.2012.6243317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"11 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficiency and thermal management in nanoscale devices
Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.