Syed Nasir Shah, Wei Da Cheng, Jeck Kie Kam, Zhi Pin Loh, Z. Ibrahim, K. Mo
{"title":"用于轻质胶凝复合材料的珍珠岩微球","authors":"Syed Nasir Shah, Wei Da Cheng, Jeck Kie Kam, Zhi Pin Loh, Z. Ibrahim, K. Mo","doi":"10.1177/26349833231158124","DOIUrl":null,"url":null,"abstract":"This preliminary work explores the possibility of utilizing perlite microsphere (PM) in producing lightweight cementitious composite (LCC). With the use of PM, LCC with dry density of about 1400 kg/m3 (35% reduction in density compared to normal cement mortar) can be obtained. Satisfactory compressive strengths of 32.6–34.5 MPa could be attained by the PM LCC, without and with supplementary cementitious materials such as silica fume and ground granulated blast furnace slag. The specific strength (compressive strength/density ratio) of LCC was also similar as the normal cement mortar. In addition, there was little difference in the flexural strength and drying shrinkage of PM LCC compared to normal cement mortar. Furthermore, similar flexural load–displacement behaviour was found between thin plate specimens produced with alkali-resistant glass fibre mesh reinforced LCC and that of normal cement mortar. In overall, this suggests that PM has the potential to be utilized as lightweight filler in producing LCC.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perlite microsphere for the use in lightweight cementitious composite\",\"authors\":\"Syed Nasir Shah, Wei Da Cheng, Jeck Kie Kam, Zhi Pin Loh, Z. Ibrahim, K. Mo\",\"doi\":\"10.1177/26349833231158124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This preliminary work explores the possibility of utilizing perlite microsphere (PM) in producing lightweight cementitious composite (LCC). With the use of PM, LCC with dry density of about 1400 kg/m3 (35% reduction in density compared to normal cement mortar) can be obtained. Satisfactory compressive strengths of 32.6–34.5 MPa could be attained by the PM LCC, without and with supplementary cementitious materials such as silica fume and ground granulated blast furnace slag. The specific strength (compressive strength/density ratio) of LCC was also similar as the normal cement mortar. In addition, there was little difference in the flexural strength and drying shrinkage of PM LCC compared to normal cement mortar. Furthermore, similar flexural load–displacement behaviour was found between thin plate specimens produced with alkali-resistant glass fibre mesh reinforced LCC and that of normal cement mortar. In overall, this suggests that PM has the potential to be utilized as lightweight filler in producing LCC.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26349833231158124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833231158124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perlite microsphere for the use in lightweight cementitious composite
This preliminary work explores the possibility of utilizing perlite microsphere (PM) in producing lightweight cementitious composite (LCC). With the use of PM, LCC with dry density of about 1400 kg/m3 (35% reduction in density compared to normal cement mortar) can be obtained. Satisfactory compressive strengths of 32.6–34.5 MPa could be attained by the PM LCC, without and with supplementary cementitious materials such as silica fume and ground granulated blast furnace slag. The specific strength (compressive strength/density ratio) of LCC was also similar as the normal cement mortar. In addition, there was little difference in the flexural strength and drying shrinkage of PM LCC compared to normal cement mortar. Furthermore, similar flexural load–displacement behaviour was found between thin plate specimens produced with alkali-resistant glass fibre mesh reinforced LCC and that of normal cement mortar. In overall, this suggests that PM has the potential to be utilized as lightweight filler in producing LCC.