D. Tryhorn, Richard Dill, D. Hodson, M. Grimaila, Christopher W. Myers
{"title":"模拟AFSIM中的战争迷雾效果","authors":"D. Tryhorn, Richard Dill, D. Hodson, M. Grimaila, Christopher W. Myers","doi":"10.1177/15485129211041963","DOIUrl":null,"url":null,"abstract":"This research identifies specific communication sensor features vulnerable to fog and provides a method to introduce them into an Advanced Framework for Simulation, Integration, and Modeling (AFSIM) wargame scenario. Military leaders use multiple information sources about the battlespace to make timely decisions that advance their operational objectives while attempting to deny their opponent’s actions. Unfortunately, the complexities of battle combined with uncertainty in situational awareness of the battlespace, too much or too little intelligence, and the opponent’s intentional interference with friendly command and control actions yield an abstract layer of battlespace fog. Decision-makers must understand, characterize and overcome this “battlespace fog” to accomplish operational objectives. This research proposes a novel tool, the Fog Analysis Tool (FAT), to automatically compile a list of communication and sensor objects within a scenario and list options that may impact decision-making processes. FAT improves wargame realism by introducing and standardizing fog levels across communication links and sensor feeds in an AFSIM scenario. Research results confirm that FAT provides significant benefits and enables the measurement of fog impacts to tactical command and control decisions within AFSIM scenarios.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling fog of war effects in AFSIM\",\"authors\":\"D. Tryhorn, Richard Dill, D. Hodson, M. Grimaila, Christopher W. Myers\",\"doi\":\"10.1177/15485129211041963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research identifies specific communication sensor features vulnerable to fog and provides a method to introduce them into an Advanced Framework for Simulation, Integration, and Modeling (AFSIM) wargame scenario. Military leaders use multiple information sources about the battlespace to make timely decisions that advance their operational objectives while attempting to deny their opponent’s actions. Unfortunately, the complexities of battle combined with uncertainty in situational awareness of the battlespace, too much or too little intelligence, and the opponent’s intentional interference with friendly command and control actions yield an abstract layer of battlespace fog. Decision-makers must understand, characterize and overcome this “battlespace fog” to accomplish operational objectives. This research proposes a novel tool, the Fog Analysis Tool (FAT), to automatically compile a list of communication and sensor objects within a scenario and list options that may impact decision-making processes. FAT improves wargame realism by introducing and standardizing fog levels across communication links and sensor feeds in an AFSIM scenario. Research results confirm that FAT provides significant benefits and enables the measurement of fog impacts to tactical command and control decisions within AFSIM scenarios.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211041963\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211041963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This research identifies specific communication sensor features vulnerable to fog and provides a method to introduce them into an Advanced Framework for Simulation, Integration, and Modeling (AFSIM) wargame scenario. Military leaders use multiple information sources about the battlespace to make timely decisions that advance their operational objectives while attempting to deny their opponent’s actions. Unfortunately, the complexities of battle combined with uncertainty in situational awareness of the battlespace, too much or too little intelligence, and the opponent’s intentional interference with friendly command and control actions yield an abstract layer of battlespace fog. Decision-makers must understand, characterize and overcome this “battlespace fog” to accomplish operational objectives. This research proposes a novel tool, the Fog Analysis Tool (FAT), to automatically compile a list of communication and sensor objects within a scenario and list options that may impact decision-making processes. FAT improves wargame realism by introducing and standardizing fog levels across communication links and sensor feeds in an AFSIM scenario. Research results confirm that FAT provides significant benefits and enables the measurement of fog impacts to tactical command and control decisions within AFSIM scenarios.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.