一种新的积分变换“日施变换”及其应用

R. Kumar, J. Chandel, S. Aggarwal
{"title":"一种新的积分变换“日施变换”及其应用","authors":"R. Kumar, J. Chandel, S. Aggarwal","doi":"10.3329/jsr.v14i2.56545","DOIUrl":null,"url":null,"abstract":"In this paper, authors propose a new integral transform “Rishi Transform” with application to determine the exact (analytic) solution of first kind Volterra integral equation (V.I.E.). For this purpose, authors first derived the Rishi transform of basic mathematical functions (algebraic and transcendential) and then the fundamental properties of Rishi transform is discussed, which can be used for solving ordinary differential equations (O.D.E), partial differential equations (P.D.E.), delay differential equations (D.D.E.), fractional differential equations (F.D.E.), difference equations (D.E.), integral equations (I.E.) and integro-differential equations (I.D.E.).  After this, authors determined the exact (analytic) solution of general first kind V.I.E.. They have considered three numerical problems and solved them completely step by step for explaining the utility of Rishi transform. Results depict that the proposed new integral transform \"Rishi Transform\" provides the exact results for first kind V.I.E. without doing complicated calculation work.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Integral Transform “Rishi Transform” with Application\",\"authors\":\"R. Kumar, J. Chandel, S. Aggarwal\",\"doi\":\"10.3329/jsr.v14i2.56545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, authors propose a new integral transform “Rishi Transform” with application to determine the exact (analytic) solution of first kind Volterra integral equation (V.I.E.). For this purpose, authors first derived the Rishi transform of basic mathematical functions (algebraic and transcendential) and then the fundamental properties of Rishi transform is discussed, which can be used for solving ordinary differential equations (O.D.E), partial differential equations (P.D.E.), delay differential equations (D.D.E.), fractional differential equations (F.D.E.), difference equations (D.E.), integral equations (I.E.) and integro-differential equations (I.D.E.).  After this, authors determined the exact (analytic) solution of general first kind V.I.E.. They have considered three numerical problems and solved them completely step by step for explaining the utility of Rishi transform. Results depict that the proposed new integral transform \\\"Rishi Transform\\\" provides the exact results for first kind V.I.E. without doing complicated calculation work.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v14i2.56545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i2.56545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的积分变换“Rishi变换”,并应用于确定第一类Volterra积分方程的精确(解析)解。为此,首先推导了基本数学函数(代数函数和超越函数)的Rishi变换,然后讨论了Rishi变换的基本性质,Rishi变换可用于求解常微分方程、偏微分方程、时滞微分方程、分数阶微分方程、差分方程、积分方程和积分微分方程。在此基础上,确定了一般第一类V.I.E的精确(解析)解。他们考虑了三个数值问题,并逐步完整地解决了它们,以解释理时变换的效用。结果表明,所提出的新的积分变换“Rishi变换”不需要进行复杂的计算工作,就能得到较准确的第一类v.i.i.结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Integral Transform “Rishi Transform” with Application
In this paper, authors propose a new integral transform “Rishi Transform” with application to determine the exact (analytic) solution of first kind Volterra integral equation (V.I.E.). For this purpose, authors first derived the Rishi transform of basic mathematical functions (algebraic and transcendential) and then the fundamental properties of Rishi transform is discussed, which can be used for solving ordinary differential equations (O.D.E), partial differential equations (P.D.E.), delay differential equations (D.D.E.), fractional differential equations (F.D.E.), difference equations (D.E.), integral equations (I.E.) and integro-differential equations (I.D.E.).  After this, authors determined the exact (analytic) solution of general first kind V.I.E.. They have considered three numerical problems and solved them completely step by step for explaining the utility of Rishi transform. Results depict that the proposed new integral transform "Rishi Transform" provides the exact results for first kind V.I.E. without doing complicated calculation work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信