Austin S Hovland, Megan Rothstein, M. Simoes-Costa
{"title":"神经嵴发育中的网络结构和调控逻辑","authors":"Austin S Hovland, Megan Rothstein, M. Simoes-Costa","doi":"10.1002/wsbm.1468","DOIUrl":null,"url":null,"abstract":"The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell‐intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping‐stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others.","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Network architecture and regulatory logic in neural crest development\",\"authors\":\"Austin S Hovland, Megan Rothstein, M. Simoes-Costa\",\"doi\":\"10.1002/wsbm.1468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell‐intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping‐stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others.\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Network architecture and regulatory logic in neural crest development
The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell‐intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping‐stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine