一种新的基于联合学习的特征提取算法

Jeng-Shyang Pan, Lijun Yan, Zongguang Fang
{"title":"一种新的基于联合学习的特征提取算法","authors":"Jeng-Shyang Pan, Lijun Yan, Zongguang Fang","doi":"10.1109/RVSP.2013.15","DOIUrl":null,"url":null,"abstract":"In this paper, a novel feature extraction algorithm, called Joint Discriminant Sparse Neighborhood Preserving Embedding (JDSNPE), based on Discriminant Sparse Neighborhood Preserving Embedding (DSNPE) and joint learning is proposed. JDSNPE aims to get the row sparsity of the transformation matrix while preserving discriminant sparse neighborhood. Experimental results on Yale database demonstrate the effectiveness of the proposed algorithm compared to Sparse Neighborhood Preserving Embedding and DSNPE.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"10 1","pages":"31-34"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Feature Extraction Algorithm Based on Joint Learning\",\"authors\":\"Jeng-Shyang Pan, Lijun Yan, Zongguang Fang\",\"doi\":\"10.1109/RVSP.2013.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel feature extraction algorithm, called Joint Discriminant Sparse Neighborhood Preserving Embedding (JDSNPE), based on Discriminant Sparse Neighborhood Preserving Embedding (DSNPE) and joint learning is proposed. JDSNPE aims to get the row sparsity of the transformation matrix while preserving discriminant sparse neighborhood. Experimental results on Yale database demonstrate the effectiveness of the proposed algorithm compared to Sparse Neighborhood Preserving Embedding and DSNPE.\",\"PeriodicalId\":6585,\"journal\":{\"name\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"volume\":\"10 1\",\"pages\":\"31-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RVSP.2013.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于判别稀疏邻域保持嵌入(DSNPE)和联合学习的特征提取算法——联合判别稀疏邻域保持嵌入(JDSNPE)。JDSNPE的目的是在保持判别稀疏邻域的同时获得变换矩阵的行稀疏性。在耶鲁数据库上的实验结果表明,与稀疏邻域保持嵌入和DSNPE相比,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Feature Extraction Algorithm Based on Joint Learning
In this paper, a novel feature extraction algorithm, called Joint Discriminant Sparse Neighborhood Preserving Embedding (JDSNPE), based on Discriminant Sparse Neighborhood Preserving Embedding (DSNPE) and joint learning is proposed. JDSNPE aims to get the row sparsity of the transformation matrix while preserving discriminant sparse neighborhood. Experimental results on Yale database demonstrate the effectiveness of the proposed algorithm compared to Sparse Neighborhood Preserving Embedding and DSNPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信