基于随机存储器的内存计算系统在电路和宏方面的发展趋势和挑战

Chip Pub Date : 2022-03-01 DOI:10.1016/j.chip.2022.100004
Song-Tao Wei , Bin Gao , Dong Wu , Jian-Shi Tang , He Qian , Hua-Qiang Wu
{"title":"基于随机存储器的内存计算系统在电路和宏方面的发展趋势和挑战","authors":"Song-Tao Wei ,&nbsp;Bin Gao ,&nbsp;Dong Wu ,&nbsp;Jian-Shi Tang ,&nbsp;He Qian ,&nbsp;Hua-Qiang Wu","doi":"10.1016/j.chip.2022.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture. Compared with their counterparts, resistive random-access memory (RRAM)-based CIM systems could consume much less power and area when processing the same amount of data. In this paper, we first introduce the principles and challenges related to RRAM-based CIM systems. Then, recent works on the circuit and macro levels of RRAM-CIM systems will be reviewed to highlight the trends and challenges in this field.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000028/pdfft?md5=959475c4c0ee61fd75b74e572faf9857&pid=1-s2.0-S2709472322000028-main.pdf","citationCount":"10","resultStr":"{\"title\":\"Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems\",\"authors\":\"Song-Tao Wei ,&nbsp;Bin Gao ,&nbsp;Dong Wu ,&nbsp;Jian-Shi Tang ,&nbsp;He Qian ,&nbsp;Hua-Qiang Wu\",\"doi\":\"10.1016/j.chip.2022.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture. Compared with their counterparts, resistive random-access memory (RRAM)-based CIM systems could consume much less power and area when processing the same amount of data. In this paper, we first introduce the principles and challenges related to RRAM-based CIM systems. Then, recent works on the circuit and macro levels of RRAM-CIM systems will be reviewed to highlight the trends and challenges in this field.</p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"1 1\",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2709472322000028/pdfft?md5=959475c4c0ee61fd75b74e572faf9857&pid=1-s2.0-S2709472322000028-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472322000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于大量数据在物理上分离的数据计算和存储单元之间移动,传统的von Neumann架构在有效处理数据密集型人工智能任务时面临许多挑战。新颖的内存计算(CIM)体系结构在同一位置实现数据处理和存储,因此比最先进的von Neumann体系结构节能得多。与同类系统相比,基于电阻随机存取存储器(RRAM)的CIM系统在处理相同数量的数据时消耗的功率和面积要小得多。在本文中,我们首先介绍了与基于ram的CIM系统相关的原理和挑战。然后,回顾了ram - cim系统在电路和宏观层面上的最新工作,以突出该领域的趋势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems

Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture. Compared with their counterparts, resistive random-access memory (RRAM)-based CIM systems could consume much less power and area when processing the same amount of data. In this paper, we first introduce the principles and challenges related to RRAM-based CIM systems. Then, recent works on the circuit and macro levels of RRAM-CIM systems will be reviewed to highlight the trends and challenges in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信