{"title":"天然绿茶中富含类黄酮的次生代谢物与消费者消费水平的较高转移相关","authors":"M. Funabashi","doi":"10.24966/fsn-1076/100063","DOIUrl":null,"url":null,"abstract":"Culture condition of crops affects the metabolites of products and consequently, consumers’ metabolism. We investigate the metabolic difference of conventional and naturally grown coarse green tea (Bancha) in correspondence to physical activity that was induced among consumers. As a result, only naturally grown Bancha tea was observed to significantly increase the consumers’ locomotive energy expenditure with a counter decrease in household activities, resulting in a higher shift of exercise level. The conventional product showed the opposite tendency but was not statistically significant. In terms of metabolite categories that distinguished between the culture conditions, conventional tea was observed to express higher primary metabolites such as amino acid, while naturally grown tea contained a superior dose of secondary metabolites, especially flavonoid. No significant correlation could be found on caffeine and catechin contents with respect to physical activity responses. The occurrence of intrinsic compounds in each culture condition was weaker than the quantitative features of common compounds in explaining the difference. Statistically significant invariant features of culture conditions were found both in 1. expression patterns and 2. intensity of distinctive common compounds considerably overlapping with drug categories. These effects on human physical activities could be interpreted as 1. combined and 2. dose effect of environmentally responsive phytochemicals, respectively, ranging widely over basic metabolic pathways and secondary metabolite biosynthesis.","PeriodicalId":12403,"journal":{"name":"Food Science and Nutrition","volume":"5 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flavonoid-Rich Secondary Metabolites In Naturally Grown Green Tea Are Correlated With A Higher Shift Of The Consumers' Excise Level\",\"authors\":\"M. Funabashi\",\"doi\":\"10.24966/fsn-1076/100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Culture condition of crops affects the metabolites of products and consequently, consumers’ metabolism. We investigate the metabolic difference of conventional and naturally grown coarse green tea (Bancha) in correspondence to physical activity that was induced among consumers. As a result, only naturally grown Bancha tea was observed to significantly increase the consumers’ locomotive energy expenditure with a counter decrease in household activities, resulting in a higher shift of exercise level. The conventional product showed the opposite tendency but was not statistically significant. In terms of metabolite categories that distinguished between the culture conditions, conventional tea was observed to express higher primary metabolites such as amino acid, while naturally grown tea contained a superior dose of secondary metabolites, especially flavonoid. No significant correlation could be found on caffeine and catechin contents with respect to physical activity responses. The occurrence of intrinsic compounds in each culture condition was weaker than the quantitative features of common compounds in explaining the difference. Statistically significant invariant features of culture conditions were found both in 1. expression patterns and 2. intensity of distinctive common compounds considerably overlapping with drug categories. These effects on human physical activities could be interpreted as 1. combined and 2. dose effect of environmentally responsive phytochemicals, respectively, ranging widely over basic metabolic pathways and secondary metabolite biosynthesis.\",\"PeriodicalId\":12403,\"journal\":{\"name\":\"Food Science and Nutrition\",\"volume\":\"5 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24966/fsn-1076/100063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24966/fsn-1076/100063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flavonoid-Rich Secondary Metabolites In Naturally Grown Green Tea Are Correlated With A Higher Shift Of The Consumers' Excise Level
Culture condition of crops affects the metabolites of products and consequently, consumers’ metabolism. We investigate the metabolic difference of conventional and naturally grown coarse green tea (Bancha) in correspondence to physical activity that was induced among consumers. As a result, only naturally grown Bancha tea was observed to significantly increase the consumers’ locomotive energy expenditure with a counter decrease in household activities, resulting in a higher shift of exercise level. The conventional product showed the opposite tendency but was not statistically significant. In terms of metabolite categories that distinguished between the culture conditions, conventional tea was observed to express higher primary metabolites such as amino acid, while naturally grown tea contained a superior dose of secondary metabolites, especially flavonoid. No significant correlation could be found on caffeine and catechin contents with respect to physical activity responses. The occurrence of intrinsic compounds in each culture condition was weaker than the quantitative features of common compounds in explaining the difference. Statistically significant invariant features of culture conditions were found both in 1. expression patterns and 2. intensity of distinctive common compounds considerably overlapping with drug categories. These effects on human physical activities could be interpreted as 1. combined and 2. dose effect of environmentally responsive phytochemicals, respectively, ranging widely over basic metabolic pathways and secondary metabolite biosynthesis.