利用社交媒体大数据进行旅游需求预测:一种新的机器学习分析方法

Yulei Li, Zhibin Lin, Sarah Xiao
{"title":"利用社交媒体大数据进行旅游需求预测:一种新的机器学习分析方法","authors":"Yulei Li,&nbsp;Zhibin Lin,&nbsp;Sarah Xiao","doi":"10.1016/j.jdec.2022.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the possibility of using a machine learning approach to analysing social media big data for tourism demand forecasting. We demonstrate how to extract the main topics discussed on Twitter and calculate the mean sentiment score for each topic as the proxy of the general attitudes towards those topics, which are then used for predicting tourist arrivals. We choose Sydney, Australia as the case for testing the performance and validity of our proposed forecasting framework. The study reveals key topics discussed in social media that can be used to predict tourist arrivals in Sydney. The study has both theoretical implications for tourist behavioural research and practical implications for destination marketing.</p></div>","PeriodicalId":100773,"journal":{"name":"Journal of Digital Economy","volume":"1 1","pages":"Pages 32-43"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773067022000073/pdfft?md5=23c91f46eef0911307805ddbb2f2509c&pid=1-s2.0-S2773067022000073-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Using social media big data for tourist demand forecasting: A new machine learning analytical approach\",\"authors\":\"Yulei Li,&nbsp;Zhibin Lin,&nbsp;Sarah Xiao\",\"doi\":\"10.1016/j.jdec.2022.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the possibility of using a machine learning approach to analysing social media big data for tourism demand forecasting. We demonstrate how to extract the main topics discussed on Twitter and calculate the mean sentiment score for each topic as the proxy of the general attitudes towards those topics, which are then used for predicting tourist arrivals. We choose Sydney, Australia as the case for testing the performance and validity of our proposed forecasting framework. The study reveals key topics discussed in social media that can be used to predict tourist arrivals in Sydney. The study has both theoretical implications for tourist behavioural research and practical implications for destination marketing.</p></div>\",\"PeriodicalId\":100773,\"journal\":{\"name\":\"Journal of Digital Economy\",\"volume\":\"1 1\",\"pages\":\"Pages 32-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773067022000073/pdfft?md5=23c91f46eef0911307805ddbb2f2509c&pid=1-s2.0-S2773067022000073-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773067022000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773067022000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究探讨了利用机器学习方法分析社交媒体大数据进行旅游需求预测的可能性。我们演示了如何提取Twitter上讨论的主要主题,并计算每个主题的平均情绪得分,作为对这些主题的一般态度的代理,然后用于预测游客到达。我们选择澳大利亚悉尼作为测试我们提出的预测框架的性能和有效性的案例。这项研究揭示了社交媒体上讨论的关键话题,这些话题可以用来预测悉尼的游客人数。本研究对旅游行为研究具有理论意义,对旅游市场营销具有实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using social media big data for tourist demand forecasting: A new machine learning analytical approach

This study explores the possibility of using a machine learning approach to analysing social media big data for tourism demand forecasting. We demonstrate how to extract the main topics discussed on Twitter and calculate the mean sentiment score for each topic as the proxy of the general attitudes towards those topics, which are then used for predicting tourist arrivals. We choose Sydney, Australia as the case for testing the performance and validity of our proposed forecasting framework. The study reveals key topics discussed in social media that can be used to predict tourist arrivals in Sydney. The study has both theoretical implications for tourist behavioural research and practical implications for destination marketing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信